Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-904X
    Keywords: drug targeting ; sugar recognition ; glycosylated dextran ; pharmacokinetics ; cytosine β-D-arabinoside
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract To develop a new carrier system for hepatic targeting, carboxymethyl-dextran (CMD) was modified with galactose and mannose residues (Gal-CMD, Man-CMD), and their disposition characteristics were studied in mice using 14C-labeled dextran. At a dose of 1 mg/kg, i.v.-injected Gal-CMD and Man-CMD rapidly accumulated in the liver parenchymal and nonparenchymal cells, respectively, because of their preferential uptake via carbohydrate receptors in these cells. Pharmacokinetic analysis revealed that their uptake rates were sufficiently large for selective drug targeting. Targeting of cytosine β-D-arabinoside (araC) was studied using Gal-CMD as a specific carrier to the hepatocytes. From the conjugate of araC with Gal-CMD, araC was released with a half-life of 36 hr in phosphate buffer (pH 7.4) and 23 hr in plasma. An in vivo biodistribution study demonstrated a disposition profile of the conjugated araC similar to that of the carrier, and selective delivery to hepatocytes of up to 80% of the dose was achieved. These findings suggest that glycosylated CMDs are carriers with a high affinity to liver parenchymal or nonparenchymal cells without any affinity to other tissues.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...