Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1399-3054
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Dehydrins (DHNs; late embryogenesis abundant D-11) are a family of plant proteins induced in response to environmental stresses such as water stress, salinity and freezing or which occur during the late stages of embryogenesis. Previously, it was reported that citrus contains a small gene family encoding a unique class of dehydrins that differs from most other plant dehydrins in various respects, such as having an unusual K-segment similar to that of gymnosperms. In the present study, we identified by cDNA differential display analysis a ‘Navel’ orange 202-bp polymerase chain reaction (PCR) fragment, which encoded the typical plant angiosperm-type K-segment consensus sequence, and of which the expression was down-regulated by exposure to low oxygen levels. The full-length cDNA sequence of the orange DHN, designated csDHN (for Citrus sinensis DHN), was further isolated by 5′-and 3′-RACE; it had a total length of 933 bp and encoded a predicted polypeptide of 235 amino acids. In addition, the same 202-bp ‘Navel’ dehydrin PCR fragment was used to screen a ‘Star Ruby’ grapefruit flavedo cDNA library, and its full-length grapefruit homologue, designated cpDHN (for C. paradisi DHN) was isolated and found to have a total length of 1024 bp and to encode a predicted polypeptide of 234 amino acids. The defined orange and grapefruit DHN proteins were completely identical in the 196 amino acids of their N-terminus but differed in their C-terminus region. Overall, the csDHN and cpDHN proteins share 84% identity and contain the conserved dehydrin serine cluster (S-segment) and a putative nuclear localization signal, but csDHN has one conserved dehydrin K-segment consensus sequence, whereas cpDHN contains two dehydrin K-segments. Both csDHN and cpDHN represent single copy genes, in ‘Navel’ orange and ‘Star Ruby’ grapefruit genomes, respectively. We found that the cpDHN gene was consistently expressed in the fruit peel tissue at harvest, but that its message levels dramatically decreased during storage at either ambient or low temperatures. However, a pre-storage hot water treatment, given to enhance fruit-chilling tolerance, increased cpDHN mRNA levels during the first 3 weeks of cold storage at 2°C, and enabled the message levels to be retained for up to a further 8 weeks of cold storage at 2°C. The hot water treatment by itself had no inductive effect on cpDHN gene expression when the fruits were held at non-chilling temperatures. Other stresses applied to the fruit, such as wounding, UV irradiation, water stress, low oxygen and exposure to the stress hormone ethylene decreased DHN mRNA levels, whereas abscisic acid had no effect at all.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-5028
    Keywords: Cucumis melo ; melon ; phenylalanine ammonia-lyase ; gene expression ; ripening ; wounding
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Phenylalanine ammonia-lyase (PAL) is the first enzyme of phenylpropanoid biosynthesis involved in the synthesis of a multiplicity of plant natural products. We have isolated and characterized a nearly fulllength cDNA clone (pmPAL-1) corresponding to a melon fruit (Cucumis melo L. var. reticulatus) gene coding for a protein which is highly similar to PAL from other lants. Melon fruit PAL is transcriptionally induced both in response to fruit ripening and wounding. PAL gene expression follows the kinetics of expression of the ethylene biosynthetic genes during fruit development. In contrast, ethylene biosynthetic genes show different induction kinetics compared to PAL expression in response to wounding. Similar results have been found for two other genes coding for enzymes involved in flavonoid biosynthesis (chalcone synthase, CHS; chalcone isomerase, CHI). Our results imply that regulation of defense gene expression in melon is a co-ordinated process in response to both ethylene and an ethylene-independent wound signal.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1573-5028
    Keywords: ascorbate oxidase ; ethylene ; fruit ripening ; melon (Cucumis melo L.) ; repression ; wounding
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract A small family of at least four genes encoding melon ascorbate oxidase (AO) has been identified and three members of it have been cloned. Preliminary DNA sequence determination suggested that melon AO genes code for enzymes homologous to ascorbate oxidases from other plants and similar to other multicopper oxidases. We describe detailed molecular studies addressing melon AO expression during organ specific differentiation, fruit development and ripening, and in response to wounding. In particular, AO transcript accumulation was induced in ovaries and the outer mesocarp of mature preclimacteric melon fruits, before the expression of genes encoding the necessary enzymatic activities for ethylene biosynthesis. On the other hand, AO was not expressed in late stages of fruit ripening and was repressed in wounded fruits. The role of ethylene in transcriptional regulation of AO is discussed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...