Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Synchronization and desynchronization of the neural rhythm in the brain play an important role in the orchestration of perception, motor action and conscious experience. Based on the results of electrocorticographic and magnetoencephalographic (MEG) recordings, it has been considered that human rolandic oscillations originate in the anterior bank of the central sulcus (20-Hz rhythm) and the postcentral cortex (10-Hz rhythm): the 20-Hz oscillation is closely related to motor function, while the 10-Hz rhythm is attributed mainly to sensory function. To test whether the rolandic oscillations are functionally relevant to the motor cortical excitability, we examined effects of 1-Hz repetitive transcranial magnetic stimulation (rTMS) of the left primary motor cortex (M1) on movement-related changes of the rolandic oscillations in 12 normal subjects. MEG data recorded during brisk extension of the right index finger in two different sessions (with and without rTMS conditioning) were compared. Motor-evoked potential (MEP) of the right hand muscle was also measured before and after rTMS to assess the motor cortical excitability. We found that 1-Hz rTMS over M1 significantly reduced the movement-related rebound of the 20-Hz oscillation in association with decreased motor cortical excitability. In particular, movement-related rebound of the 20-Hz rhythm was closely tied with motor cortical excitability. These findings further strengthen the notion of functional relevance of 20-Hz cortical oscillation to motor cortical excitability. In the framework of previous studies, the decrease in movement-related rebound may be regarded as a compensatory reaction to the inhibited cortical activity.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    European journal of neuroscience 16 (2002), S. 0 
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: It has been suggested that visuospatial cognitive disabilities seen in children with Williams syndrome (WMS) are related to a dysfunction of the dorsal stream in the visual information analysis system. We investigated whether visual motion detection is also impaired in WMS because it is one of the main functions of the dorsal stream. Using various psychophysical examinations and magnetoencephalography, we studied a child with WMS who had the typical features of the syndrome. We found profound impairments in the visuospatial cognitions, as previously reported in WMS. In contrast, he had normal ability for the direction discrimination of coherent motion on a background of randomly moving dots, and he perceived apparent motion as do normal children. Furthermore, the latencies of both responses to the coherent and incoherent motions as measured by magnetoencephalography were within the mean ± 2 SD among normal adults and the estimated origins were near the human homologue of V5/MT (visual area 5/middle temporal area). The results indicate that the visuospatial cognitive deficits in WMS can occur without impairment of the visual motion detection. We consider that the deficits are caused by a restricted dysfunction of the neural groups for position and three-dimensional form perceptions in the dorsal stream of the visual system, though other possibilities are not excluded.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-1459
    Keywords: Parkinson's disease Associated movement ; Hypokinesia ; Wrist dorsiflexion
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract We compared the degrees of impairment between intended voluntary movement and its simultaneous automatic associated movement in Parkinson's disease (PD). We studied wrist dorsiflexion as a movement associated with grip in 20 patients with PD and in 20 normal controls. The patients showed a significantly smaller dorsiflexion as compared with the controls. The decrease in associated movement was related to the severity of clinical stage of the disease, while gripping was performed well in each stage. The temporal relationship between grip and associated movement was the same for both groups of subjects. The patients showed no disturbance of amplitude or velocity for a single motor act of wrist dorsiflexion. Persons with PD have a greater reduction of automatic associated movement than intended voluntary movement. This may be one of the bases of clinical symptoms of PD patients in early stages of the disease.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1573-6792
    Keywords: Pain ; Magnetoencephalography ; MEG ; Second sensory cortex ; Amygdalar nuclei ; Cingulate cortex
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract The temporal and spatial processing of pain perception in human was traced by magnetoencephalography (MEG). We applied a painful CO2 laser beam to the forearm of 11 normal subjects, and estimated the activated areas using a single equivalent current dipole (ECD) at each time point, and a brain electric source analysis (BESA) as a spatio-temporal multiple source analysis method. The four-source model was found to be the most appropriate; sources 1 and 2 at the secondary sensory cortex (SII) contralateral and ipsilateral to the stimulation, and sources 3 and 4 at the anterior medial temporal area (probably the amygdalar nuclei or hippocampal formation) contralateral and ipsilateral to the stimulation, respectively. Activities in all 4 areas were temporally overlapped. Activity in the primary sensory cortex (SI) contralateral to the stimulated site was not identified. Activity in the cingulate cortex was also not clearly identified. These results are probably due to one or more of the following factors; (1) the cingulate cortex is too deep, (2) the ECDs generated in the cingulate cortex are mainly oriented radially, and (3) the ECDs generated in bilateral hemispheres interfere with each other. No significant or consistent magnetic fields were recorded after 500 msec following the stimulation, probably due to the complicated spatial and temporal overlapping of activities in multiple areas.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...