Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Analytical chemistry 65 (1993), S. 1785-1793 
    ISSN: 1520-6882
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Weinheim : Wiley-Blackwell
    Electrophoresis 17 (1996), S. 144-151 
    ISSN: 0173-0835
    Keywords: DNA sequencing ; Capillary gel electrophoresis ; Laser-induced fluoresence detection ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Rapid, high-resolution separation of DNA sequencing fragments by capillary gel electrophoresis using an automated, commercially available instrument is presented. The effect of column lengths and electric field strength on the resolution of sequencing fragments as well as the sensitivity of laser-induced rescence (LIF) detection was investigated. Using a short capillary of 20 length, which results in a U-shape of the capillary in the capillary cartridge very high separation efficiency, up to 17 × 106 theoretical plates per m, is obtained. Analysis of the band broadening factors revealed that the resolution on the short column is predominantly determined by axial diffusion and to a minor extent by detection zone width. Presumably due to the coiling of longer capillaries in the capillary cartridge, increasing the capillary length does increase the separation efficiency as predicted for diffusion-limited separation. The concentration limit to detection (signal-to-noise ratio = 2) is 0.2 × 10-1 M of fluorescein-labeled oligonucleotide primer under the separating conditions for DNA sequencing samples. Increasing the electric field strength from 100 to 175 V/cm improved resolution and at the same time approximately doubled the sequencing speed. Fragments up to 500 nucleotides in length are resolved in less than 50 min.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...