Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Journal of neurochemistry 87 (2003), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Oestrogen is important for the development of neuroendocrine centres and other neural networks including limbic and motor systems. Later in adulthood, oestrogen regulates the functional performance of different neural systems and is presumably implicated in the modulation of cognitive efficiency. Although still a matter of controversial discussion, clinical and experimental studies point at a potential neuroprotective role of oestrogen. Concerning the concept of cellular oestrogen action, it is undisputed that it comprises the binding and activation of nuclear receptors. The last decades have, however, immensely broadened the spectrum of steroid signalling within a cell. Novel steroid-activated intracellular signalling mechanisms were described which are usually termed ‘non-classical’ or ‘non-genomic’. The brain appears to be a rich source of this new mode of oestrogen action. Studies from the past years have pinpointed non-classical oestrogen effects in many CNS regions. All available data support the view that non-classical oestrogen action requires interactions with putative membrane binding sites/receptors. In this article, we aim at compiling the most recent findings on the nature and identity of membrane oestrogen receptors with respect to the brain. We also attempt to turn readers attention to the coupling of these ‘novel’ receptors to distinct intracellular signalling pathways.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Journal of neuroendocrinology 10 (1998), S. 0 
    ISSN: 1365-2826
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Androgen metabolites synthesized by neural aromatase and 5α–reductase are implicated in many aspects of mammalian brain development and, in particular, in the masculinization of distinct central nervous system structures and brain functions. The present study was designed to determine (1) the developmental profile of aromatase- and 5α–reductase type I mRNA expression in the mouse hypothalamus and (2) to relate ontogenetic sex differences in aromatase activity which have been described in the past to sex-specific aromatase gene expression. In addition, we analysed the effect of androgens on the perinatal regulation of hypothalamic aromatase and 5α–reductase type I mRNA expression. By applying semiquantitative reverse transcription-polymerase chain reaction analysis, we found hypothalamic aromatase mRNA expression to be developmentally regulated and to display sex differences at birth and on postnatal day 15 with higher mRNA levels in males. Newborn males and females, which were treated in utero with the androgen receptor antagonist cyproterone actetate, exhibited significantly reduced aromatase mRNA levels compared with untreated controls. In contrast to aromatase, expression levels of hypothalamic 5α–reductase mRNA did not reveal a clear-cut developmental profile or sex differences, and no regulatory role for androgens in controlling 5α–reductase mRNA expression was found. In conclusion, these results demonstrate perinatal sex differences in hypothalamic aromatase- but not 5α–reductase gene expression and suggest that sex differences in perinatal aromatase activity are reflected by corresponding differences in mRNA levels. Androgens are found to control brain estrogen formation pretranslationally at the level of aromatase gene expression. Our findings imply that sex differences in androgen availability and responsiveness are important regulatory factors for aromatase expression in the developing male hypothalamus.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    European journal of neuroscience 19 (2004), S. 0 
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: In vertebrates, the rhythmic transcription of clock genes, regulated by their own gene products, provides the basis for self-sustaining circadian clockworks. These endogenous clocks are lost in most mammalian tissues, but not in the central pacemaker of the hypothalamic suprachiasmatic nucleus (SCN). An interesting model system to understand this phylogenetic shift in function of clock gene products is the rodent pineal gland, as its intrinsic clockwork was replaced during evolution by an input-dependent oscillator. By means of immunohistochemistry, immunoblotting and real time PCR, we investigated the day/night expression profiles of all major clock genes and their products in the pineal gland of one melatonin-proficient and one melatonin-deficient mouse strain. All clockwork elements known to be indispensable for a sustained rhythm generation in the SCN were also found in the pineal organ of both mouse strains. Only mPer1 mRNA and PER1 protein accumulation coincides with timecourses of many other pineal genes and their products, which are cyclicAMP inducible. Here, presented data together with the known mechanisms for regulation of the mPer1 gene in the rodent pineal gland forward the idea that in this tissue PER1 may have a trigger function for initiating the cycles of the clockwork's transcriptional/translational feedback loops.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Journal of neurocytology 29 (2000), S. 375-385 
    ISSN: 1573-7381
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Gonadal steroids affect a wide variety of functions in the mammalian brain ranging from the regulation of neuroendocrine systems and the modulation of behavior to the stimulation of differentiation and plasticity of distinct neuronal populations and circuits. The last decades have also demonstrated that estrogen serves as a neuroprotective factor for distinct neurodegenerative disorders. Such neuroprotective effects of estrogen are most obvious for Parkinson's and Alzheimer's disease. Despite this knowledge, little is known about the mechanisms and cellular targets by that estrogen might elicit its protective influence. In the past, we have intensively studied the effects of estrogen on midbrain dopaminergic neurons which represent the most affected cell population during Parkinson's disease. These studies were mainly performed on developing dopaminergic cells and revealed that estrogen is an important regulator of plasticity and function of this neuronal phenotype. Precisely, we found that dopaminergic neurons are direct targets for estrogen and that estrogen stimulates neurite extension/branching and the expression of tyrosine hydroxylase, the key enzyme in dopamine synthesis. Together with other in vivo studies, we might draw the conclusion that estrogen is required for the plasticity and activity of the developing and adult nigrostriatal system. The presence of the estrogen-synthesizing enzyme aromatase within the nigrostriatal system further supports this idea. Surprisingly, estrogen effects on nigrostriatal cell function are not only transmitted by classical nuclear estrogen receptors but also depend on nonclassical estrogen actions mediated through putative membrane receptors coupled to diverse intracellular signaling cascades. In the future, it has to be elucidated whether nonclassical mechanisms besides genomic actions also contribute to estrogen-mediated neuroprotection in the adult CNS.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...