Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Journal of agricultural and food chemistry 25 (1977), S. 1404-1408 
    ISSN: 1520-5118
    Source: ACS Legacy Archives
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Process Engineering, Biotechnology, Nutrition Technology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Journal of agricultural and food chemistry 38 (1990), S. 1100-1105 
    ISSN: 1520-5118
    Source: ACS Legacy Archives
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Process Engineering, Biotechnology, Nutrition Technology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1573-5036
    Keywords: Lycopersicon esculentum ; nitrogen ; plant growth ; plant nutrition ; soil solarization ; tomato
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Soil solarization is a non-chemical disinfestation technique that frequently promotes plant growth in the absence of known major pathogens, a phenomenon termed increased growth response (IGR). The effect of solarization on plant nutrients and their role in the IGR was studied with tomato plants grown in solarized or non-solarized (control) sandy soil, under controlled conditions. Solarization considerably increased the soil concentrations of water extractable N, K, Ca, Mg and Na at most sites, whereas Cl and DTPA extractable Mn, Zn, Fe and Cu were decreased by the treatment. Plant growth and specific leaf area were enhanced in solarized as well as in N-supplemented control soil. In tomato plants grown in solarized soil, concentrations of most nutrients in the xylem sap, including N, were increased compared to the control, whereas Cl and SO4 levels decreased. The most significant increase in leaf nutrient concentration caused by soil solarization was recorded for N. Furthermore, leaf N concentration was highly and positively correlated with shoot growth. The concentration of Cu increased in leaves from the solarization vs. the control treatment, whereas that of SO4 and Cl decreased, the latter presumably below the critical toxicity level. The correlation between shoot growth and leaf concentration was positive for Cu and inverse for Cl and SO4. In conclusion, we found that soil solarization significantly affects nutrient composition in tomato plants, and provided strong evidence that N, and eventually also Cl, play a major role in IGR.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1573-5087
    Keywords: GA-quantification ; gibberellin A1 ; gibberellin A3 ; gibberellins ; increased growth response ; Lycopersicon esculentum ; soil solarization
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Environmental factors often affect plant growth bymodifying the levels of endogenous gibberellins (GAs).In this study, the involvement of GAs in theregulation of enhanced shoot growth in tomato (Lycopersicon esculentum Mill.) plants grown in soiltreated by solarization (a soil disinfestation method)was investigated. Seedlings at the cotyledonary stagewere transplanted into either solarized or untreatedcontrol soil. Plants in both soils grew free of anydisease symptoms. As soon as four days after planting,seedlings in solarized soil had a higher dry weightcompared to the control. Throughout most of theexperimental period of 18 days, leaf weight ratio washigher in the solarized vs. the control soil. Treatingshoot tips of control plants with 0.1 mg.L-1GA3 resulted in enhanced leaf and stem growth,thus reaching values similar to those of plants grownin solarized soil. The opposite effect was obtained bytreating plants grown in solarized soil with1 mg.L-1 uniconazole, a GA biosynthesisinhibitor. Quantitative GC-MS analyses revealed thatGA1 content in one and two-weeks old transplantsgrown in various solarized soils was up to 1.8 fold,and that GA3 content in two-weeks old plants wasup to five fold the values in the control. Theseincreases were linearly correlated with the increasein leaf dry weight. It was concluded that theincreased quantities of GA1, and eventuallyGA3, play a role in the increased growth oftomato shoots in solarized soil as early as seven daysafter transplanting.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Archives of Insect Biochemistry and Physiology 22 (1993), S. 451-466 
    ISSN: 0739-4462
    Keywords: accelerated degradation ; soil microorganisms ; bacterial degraders ; pesticides ; enzymes ; Chemistry ; Food Science, Agricultural, Medicinal and Pharmaceutical Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology
    Notes: Recent studies have demonstrated that interaction between various agrochemicals and soil microorganisms may either slow down or enhance processes of degradation. Soil disinfestation is employed for the control of soil-borne pathogens and weeds. Soil application of such broad-spectrum biocides, as well as some more selective chemicals, has a strong effect on microbial activity, which may result in drastic reduction in the rate of degradation of pesticides applied to such treated soils. Application of pesticides to previously disinfested soils may extend their biological activity, which in the case of herbicides could cause phytotoxic damage to the next crop. In contrast, repeated application of the same or structurally related pesticides may result in a selective buildup of microbial populations capable of degrading the pesticide at much faster rates. Cases of accelerated degradation were reported for pesticides belonging to various chemical groups. Studies were conducted to evaluate the mechanisms of accelerated degradation. For several pesticides it has been shown that soil fungi are involved in their normal degradation, but not in their accelerated degradation. The shift in the rate of degradation of pesticides such as diphenamid, benomyl, and S-ethyl dipropylthiocarbamate, in soils that have acquired accelerated degradation, seems to be associated with the buildup of populations of bacterial degraders. Moreover, it has been shown that for the herbicide diphenamid, accelerated degradation is apparently linked to the induction of an oxidative demethylation process in soil bacteria, which might be analogous to the development of resistance in pests. Contrary to studies demonstrating accelerated degradation of the systemic insecticide aldicarb and accumulation of aldicarb sulfoxide in non-history soils, our work has shown that repeated application of this carbamate at several locations in Israel over a 10-year period did not induce accelerated degradation. It should be pointed out that in the Israeli soils there was only minimal formation of aldicarb sulfoxide. These studies were performed in soils with a pH ranging from 7.8 to 8.3, which is higher than the pH reported for soils where accelerated degradation was detected. © 1993 Wiley-Liss, Inc.
    Additional Material: 12 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...