Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    AIChE Journal 1 (1955), S. 305-311 
    ISSN: 0001-1541
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Application of a dynamic or unsteady-state technique to the problem of radial mixing in a tube is described. Measurement of the amplitude attenuation suffered by a sinusoidally modulated gas composition wave as it flows within an open (unpacked) tube makes possible the direct determination of an “equivalent gas film thickness” from which a mass transfer film coefficient may be readily calculated.A brief summary of the method employed for obtaining the necessary mathematical relationships is presented, along with descriptions of the techniques developed for measurement of small amplitude differences at wave frequencies as high as 10 cycles /sec.Experimentally, conditions were varied to include a range of Schmidt number from 0.18 to 1.24 and of Reynolds number from 4,000 to 50,000. The results of this work appear to fall nearly in line with the semitheoretical equation of Martinelli as written for mass transfer. Generally speaking, a was found to be an increasing function of NSc, varying from about 0.5 to a maximum of 0.77; β, in turn, was found to increase with NRe from 0.3 to 0.5.A suggestion for extending the method to measurement of eddy diffusivities in the axial direction is included.
    Additional Material: 13 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...