Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Bradford : Emerald
    Engineering computations 19 (2002), S. 787-819 
    ISSN: 0264-4401
    Source: Emerald Fulltext Archive Database 1994-2005
    Topics: Technology
    Notes: This paper presents the physical, mathematical and numerical models forming the main structure of the numerical analysis of the thermal, hydral and mechanical behaviour of normal, high-performance concrete (HPC) and ultra-high performance concrete (UHPC) structures subjected to heating. A fully coupled non-linear formulation is designed to predict the behaviour, and potential for spalling, of heated concrete structures for fire and nuclear reactor applications. The physical model is described in more detail, with emphasis being placed upon the real processes occurring in concrete during heating based on tests carried out in several major laboratories around Europe as part of the wider high temperature concrete (HITECO) research programme. A number of experimental and modelling advances are presented in this paper. The stress-strain behaviour of concrete in direct tension, determined experimentally, is input into the model. The hitherto unknown micro-structural, hydral and mechanical behaviour of HPC/UHPC were determined experimentally and the information is also built into the model. Two examples of computer simulations concerning experimental validation of the model, i.e. temperature and gas pressure development in a radiatively heated HPC wall and hydro-thermal and mechanical (damage) performance of a square HPC column during fire, are presented and discussed in the context of full scale fire tests done within the HITECO research programme.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...