Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Westerville, Ohio : American Ceramics Society
    Journal of the American Ceramic Society 85 (2002), S. 0 
    ISSN: 1551-2916
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Starting from three powder mixtures of 80 vol% SiC (100α, 50α/50β, 100β) and 20 vol% YAG, liquid-phase-sintered silicon carbide ceramics were prepared by hot pressing at 1800°C for 1 h under 25 MPa, and then by hot forging or annealing at 1900°C for 4 h under an applied stress of 25 MPa in argon. The phase transformation and texture development in the as-hot-pressed, hot-forged, and annealed SiC ceramics were investigated via X-ray diffraction (XRD) and the pole figure measurements. The 6H → 4H polytypic transformation was observed in samples consisting of both α- and β-SiC phases when subjected to compressive deformation but absent in the case of annealing, suggesting the deformation-enhanced solubility of aluminum in SiC. Deformation was also found to enhance the 3C → 4H transformation in the sample containing entirely β-phase, which is due to the accelerated solution-precipitation process assisted by grain boundary sliding. The current study showed that the β- →α-phase transformation had little effect on texture development in SiC. Hot forging generally produced the strongest texture, with the calculated maximum of 2.2 times random in samples started with pure α-SiC phase. The mechanism for texture development was explained based on the microstructural observations.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Westerville, Ohio : American Ceramics Society
    Journal of the American Ceramic Society 83 (2000), S. 0 
    ISSN: 1551-2916
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Silicon nitride–silicon oxynitride (Si3N4–Si2N2O) in situ composites have been fabricated via either the annealing or the superplastic deformation of sintered Si3N4 that has been doped with a silica-containing additive. In this study, quantitative texture measurements, including pole figures and X-ray diffraction patterns, are used in conjunction with scanning electron microscopy and transmission electron microscopy techniques to examine the degree of preferred orientation and texture-development mechanisms in these materials. The results indicate that (i) only superplastic deformation can produce strong textures in the β-Si3N4 matrix, as well as Si2N2O grains that are formed in situ; (ii) texture development in the β-Si3N4 matrix mainly results from grain rotation via grain-boundary sliding; and (iii) for Si2N2O, a very strong strain-dependent texture occurs in two stages, namely, preferred nucleation and anisotropic grain growth.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Westerville, Ohio : American Ceramics Society
    Journal of the American Ceramic Society 81 (1998), S. 0 
    ISSN: 1551-2916
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Quantitative texture analysis, which included calculation of the orientation distribution function, was used to demonstrate textures in hot-pressed and subsequently annealed silicon carbide (SiC). The results indicated that the hot pressing and annealing could produce strong textures in SiC. Grain rotation during hot pressing and preferred grain growth of plate-shaped α-SiC grains during annealing both apparently contributed to texture development in the SiC materials. The {111} pole figure in hot-pressed material (mostly ß-SiC) and the (004) pole figure in annealed material (mostly α-SiC) were consistent with the microstructural observations. The fracture toughness of hot-pressed and annealed material measured parallel to the hot-pressing direction (5.7 MPam1/2) was higher than that measured perpendicular to the hot-pressing direction (4.4 MPam1/2), because of the texture and the microstructural anisotropy.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Westerville, Ohio : American Ceramics Society
    Journal of the American Ceramic Society 86 (2003), S. 0 
    ISSN: 1551-2916
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Silicon nitride ceramics seeded with 3 wt%β-Si3N4 whiskers of two different sizes were prepared by a modified tape casting and gas pressure sintering. The fine whiskers had a higher aspect ratio than the coarse whiskers. Quantitative texture analysis including calculation of the orientation distribution function (ODF) was used for obtaining the degrees of preferred orientation of sintered samples. The maximum multiples of random distribution (mrd) values of samples seeded with the fine and coarse whiskers were large, greater than 15 and 9, respectively. Meanwhile, the mrd value of a sample seeded with fine whiskers was only 9 when it was prepared by conventional tape casting. The microstructures and the XRD data revealed that the well-aligned whiskers grew significantly after sintering and dominated the texture. Differences among the degrees of preferred orientation of the samples were explained using Jeffrey's model on rotation of elliptical particles carried by a viscous fluid.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Journal of materials science 16 (1997), S. 1384-1386 
    ISSN: 1573-4811
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Journal of materials science 32 (1997), S. 4777-4782 
    ISSN: 1573-4803
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract Fine β-SiC powders either pure or with the addition of 1 wt% of α-SiC particles acting as a seeding medium, were hot-pressed at 1800°C for 1 h using Y2O3 and Al2O3 as sintering aids and were subsequently annealed at 1900°C for 2, 4 and 8 h. During the subsequent heat treatment, the β→α phase transformation of SiC produced a microstructure of “in situ composites” as a result of the growth of elongated large α-SiC grains. The introduction of α-SiC seeds into the β-SiC accelerated the grain growth of elongated large grains during annealing which led to a coarser microstructure. The sample strength values decreased as the grain size and fracture toughness continued to increase beyond the level where clusters of grains act as fracture origins. The average strength of the in situ-toughened SiC materials was in the range of 468–667 MPa at room temperature and 476–592 MPa at 900°C. Typical fracture toughness values of 8 h annealed materials were 6.0 MPa m1/2 for materials containing α-SiC seeds and 5.8 MPa m1/2 for pure β-SiC samples.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...