Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science, Ltd
    European journal of neuroscience 18 (2003), S. 0 
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Na+ channels in the dendrites of rat CA1 pyramidal neurons display a profound activity-dependent inactivation, termed slow inactivation, that limits excitability in the dendrites even at low physiological rates of firing. The magnitude of this slow inactivation is powerfully modulated by a protein kinase C-dependent process. Because activation of kinases is a rapid and common feature of a number of seizure models, we hypothesized that a loss of slow inactivation of Na+ channels might exacerbate other changes in excitability. Thus, we observed the effects of a brief (5 min) chemical convulsant treatment on Na+ currents and action potentials in hippocampal slices. We found that slow inactivation decreased significantly and remained decreased for at least 30 min after return to control conditions. Pretreatment with either chelerythrine, a protein kinase C inhibitor, or U0126, a mitogen-activated protein kinase/extracellular signal regulated kinase kinase (MEK) inhibitor, blocked this reduction of slow inactivation. These results demonstrate that a brief period of hyperexcitability leads to a rapid, protein kinase-dependent loss of slow inactivation of Na+ channels that would contribute to and perhaps prolong the hyperexcitable state.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...