Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Cardiovascular drug reviews 17 (1999), S. 0 
    ISSN: 1527-3466
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1435-1803
    Keywords: Key words Carnitine inhibition – 3-(2,2,2-trimethyl-hydrazinium) propionate – sarcoplasmic reticulum Ca2+-ATPase – hexokinase – myocardial infarction
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract It was previously reported than inhibition of carnitine synthesis by 3-(2,2,2-trimethyl-hydrazinium) propionate (MET-88) restores left ventricular (LV) systolic and diastolic function in rats with myocardial infarction (MI). Preservation of the calcium uptake function of sarcoplasmic reticulum Ca2+-ATPase (SERCA2) is one of the possible mechanisms by which MET-88 alleviates hemodynamic dysfunction. To test this hypothesis, the effects of MET-88 on protein content of SERCA2 were evaluated using the same rat model of heart failure. Myocardial protein content of hexokinase, which is one of the key enzymes of glucose utilization, was also measured. Either MET-88 (MET-88 group) or a placebo (MI group) was administered for 20 days to rats with MI induced by coronary artery ligation. The control group underwent sham surgery (no ligation) and received placebo. In LV myocardial homogenates, the myocardial SERCA2 protein content was 32% lower (p〈0.05) in the MI group than in the control group. However, in the MET-88 group myocardial SERCA2 content was the same as in the control group. Hexokinase I protein content was 29% lower (p〈0.05) in the MI group compared with the control. In contrast, hexokinase II protein content did not differ significantly among the three groups. Consequently, inhibition of carnitine synthesis ameliorates depression of SERCA2 and hexokinase I protein content which may reduce tissue damage caused by MI.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1573-4919
    Keywords: sarcoplasmic reticulum ; SR Ca2+-ATPase ; [Ca2+]i transients ; cell shortening ; γ-butyrobetaine hydroxylase inhibitor ; heart failure
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Abstract We previously reported that MET-88, 3-(2,2,2-trimethylhydrazinium) propionate, improved left ventricular diastolic dysfunction induced by congestive heart failure (CHF) in rats. The present study was designed to investigate the mechanism by which MET-88 improved the cardiac relaxation impaired in CHF rats. The left coronary artery of the animals was ligated, and the rats were then orally administered vehicle (control), MET-88 at 50 or 100 mg/kg or captopril at 20 mg/kg for 20 days. Myocytes were isolated from the non-infarcted region in the left ventricle, and cell shortening and [Ca2+]i transients were measured with a video-edge detector and by fluorescence analysis, respectively. In CHF control rats, the diastolic phase of cell shortening was prolonged compared with that of the sham-operated (sham) rats. This prolongation was prevented by treatment with MET-88 at 100 mg/kg or captopril at 20 mg/kg. CHF control rats also showed an increase in the decay time of [Ca2+]i transients compared with sham rats. MET-88 at 100 mg/kg and captopril at 20 mg/kg attenuated the increase in decay time of [Ca2+]i transients. Ca2+ uptake activity of the sarcoplasmic reticulum (SR) isolated from the non-infarcted region in the left ventricle was measured, and Lineweaver-Burk plot analysis of the activity was performed. CHF control rats revealed a decrease in the Vmax for SR Ca2+ uptake activity without alteration in Kd. MET-88 at 100 mg/kg significantly prevented the decrease in Vmax, but had no effect on Kd. Also, treatment with MET-88 at 100 mg/kg improved myocardial high-energy phosphate levels impaired in CHF rats. These results suggest that one of the mechanisms by which MET-88 improved cardiac relaxation in CHF rats is based on the amelioration of [Ca2+]i transients through increase of SR Ca2+ uptake activity.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...