Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 89 (2001), S. 7174-7176 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Magnetic imaging in the transmission electron microscope (TEM) has been used to examine submicron elements with the aim of discovering down to what element size complex domain patterns can form. The elements were squares, circles, triangles, and pentagons in the size range 100–500 nm and were made from 36 nm Co films or 8 nm Ni80Fe20 (NiFe) with in-plane magnetization. The magnetic domain structures in these elements were imaged at high resolution using the differential phase contrast imaging mode in a TEM. Nonuniform magnetization structures were seen in the images. Vortices were present at remanence in all shapes of 36-nm-thick Co elements down to 100 nm size and in circular NiFe elements down to 116 nm diameter. Triangular NiFe elements did not have a vortex state at remanence, instead the magnetization curved round within the element but did not achieve complete flux closure. In simulations of square and circular NiFe elements, it was found that defects at the edges of the elements encouraged reversal by a vortex mechanism, whereas for simulated elements with no defects, reversal was by rotation and occurred at much lower fields. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 87 (2000), S. 5105-5107 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Magnetic nano-elements made from NiFe and Co have been investigated using magnetic imaging in the transmission electron microscope. Nano-elements like these have possible uses for in-plane patterned media or solid state memory. In both cases the elements will need to be patterned into closely spaced arrays and magnetostatic interactions between the elements will begin to become significant. Arrays must therefore be designed so that an element's interactions with its neighbors will be small compared to its coercivity. Arrays of NiFe elements 300 nm long, 50–100 nm wide, and 26 nm thick, were fabricated by electron beam lithography and lift-off patterning. Their switching behavior and the interactions between them were studied in detail. Magnetization sequences were recorded and hysteresis loops constructed. For rows of NiFe elements with the gap between elements the same as the element width or larger, the interactions turn out to be small, suggesting that denser arrays would be possible. © 2000 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 85 (1999), S. 5237-5242 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Domains and domain walls in micron and submicron sized magnetic elements can be studied at high resolution using Lorentz microscopy in the transmission electron microscope. In situ magnetizing experiments are possible in which magnetization reversal processes can be viewed directly in the presence of varying magnetic fields. These techniques have been used to investigate small magnetic structures fabricated by electron beam lithography on electron transparent membrane substrates. Patterned elements as small as 200 ×40 nm have been imaged magnetically. Detailed studies have been carried out into the properties of high aspect ratio (acicular) elements of Co and a soft NiFe alloy. It has been found that the coercivity increases as the elements become narrower, down to ultrasmall elements with a width of 40 nm. Element length has no effect so long as the aspect ratio is sufficiently high. Magnetization reversal in acicular elements is known to begin from the ends of the elements, therefore the shape of the ends—flat, elliptical, or pointed—has a significant effect on the coercivity. The magnetic environment of an element is also highly important in determining its properties. A one-dimensional array of closely spaced elements has the same average switching field as an isolated element but the spread in values is greatly increased when the gap between elements is made smaller than the width of an element. Adding rows of elements to make a two-dimensional array also has an effect, even if the rows are spaced further apart than the length of the elements. © 1999 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 75 (1999), S. 3683-3685 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: We have investigated the magnetic properties of ultra-small-patterned elements of Co and NiFe thin films. The elements were rectangular with an aspect ratio in the range 3.75–20. The smallest were 200×40 nm2 with 50 nm gaps between them, corresponding to an areal density of 27 Gbit/in2 if used as discrete-patterned media for magnetic recording. The elements were fabricated by electron-beam lithography and lift-off patterning and high-resolution magnetic images were obtained by Lorentz microscopy in a transmission electron microscope. In situ magnetization reversal experiments showed that the strong dependence of the switching field on element width extended to the smallest elements of both materials. The switching field for 40-nm-wide Co elements was 1200 Oe and for 40-nm-wide NiFe elements was 800 Oe. Element length and aspect ratio had little effect. © 1999 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 83 (1998), S. 5321-5325 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Simple calculations suggest that when continuous films of spin-valve material are patterned into micron-sized elements the magnetic properties should change markedly, depending on the element shape and size. We have used the differential phase contrast imaging mode of transmission electron microscopy to study directly the magnetization distributions supported by such elements in zero field and when subjected to an applied field in the pinning direction. For elements whose long axis is parallel to the pinning direction a parallel alignment of the free and pinned layers is favored. When subjected to a field a complex domain structure evolves and different irreversible paths are followed as the element is taken from negative to positive saturation and back again. By contrast, when the pinning direction is parallel to the short axis an antiparallel arrangement, where the magnetostatic contribution to the energy is effectively suppressed, can be preferred and simpler reversal mechanisms, with a higher degree of reversibility, are frequently seen. © 1998 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 71 (1997), S. 539-541 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Switching fields of magnetic elements with nanometric dimensions have been investigated by Lorentz microscopy using a transmission electron microscope. Acicular elements of Co and Ni80Fe20 were fabricated by electron beam lithography and lift-off techniques. They were 1.6–3.5 μm long, 200 nm wide, and 20–50 nm thick, with flat rectangular ends or triangular pointed ends, and were patterned in linear arrays with center-to-center spacing ranging from 7 μm to 250 nm. Switching fields and reversal behavior of the elements were found to depend strongly on the shape of the ends and, in a closely packed array, on element separation, thereby providing a way of controlling their magnetic properties. © 1997 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...