Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: We report boron penetration and thermal instability of p+ polycrystalline-Si (poly-Si)/ZrO2 (100 Å)/SiO2 (∼7 Å)/n-Si metal-oxide-semiconductor (MOS) structures. The flatband voltage shift (ΔVFB) of the p+ poly-Si/ZrO2/SiO2/n-Si MOS capacitor as determined by capacitance–voltage measurement was ∼0.18 V, corresponding to a p-type dopant level of 1.1×1012 B ions/cm2 as the activation temperature increased from 800 to 850 °C. Additional ΔVFB of ∼0.24 V was measured after the anneal from 850 to 900 °C. Noticeable boron penetration into the n-type Si channel as observed by secondary ion mass spectroscopy also confirmed the VFB instability with activation annealing above 850 °C. An abnormal decrease of accumulation capacitance was also found after anneal at 900 °C due to an excessive leakage current which was attributed to the formation of ZrSix nodules at the poly-Si/ZrO2 interface. We observed 4–5 orders of magnitude lower leakage current from the small-size capacitors (〈50×50 μm2) up to the activation anneal of 850 °C for 30 min, while the formation of interfacial ZrSix nodules at 900 °C cannot be avoidable even at 0.6-μm-wide gate lines. © 2002 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 80 (2002), S. 3177-3179 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: We demonstrate a suppressed boron penetration in p+ polycrystalline-Si (poly-Si)/Al2O3/n-Si metal–oxide–semiconductor (MOS) capacitors using a remote plasma nitridation (RPN) of Al2O3 surface. The B penetration was sufficiently suppressed for temperature to 850 °C in N2 for 30 min as manifested by the negligible flat band shift (ΔVFB) and insignificant B diffusion. The nitrogen (N) incorporation in Al2O3 surface appears to effectively impede the B diffusion into the Si channel. Increased gate leakage current for the n+ poly-Si/RPN-Al2O3/p-Si n-type MOS capacitors was observed and attributed to the reduced band gap energy of RPN-Al2O3 due to the formation of AlN and bulk defects due to RPN. Optimization of N concentration is required for the suppressed B penetration and leakage reduction. © 2002 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    s.l. ; Stafa-Zurich, Switzerland
    Materials science forum Vol. 475-479 (Jan. 2005), p. 1865-1868 
    ISSN: 1662-9752
    Source: Scientific.Net: Materials Science & Technology / Trans Tech Publications Archiv 1984-2008
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: The uniform and dense structure of thin films is influenced by the texture of films. It was good to have uniform and dense structure and bad to have an open columnar structure in TiN thin films. Therefore, the property of diffusion barrier of the TiN films in semiconductor also is related to the texture and microstructure of TiN coated layers. In this study, the relationships between the textures and microstructures and the properties of TiN films on semiconductor were investigated under different processing methods (PVD and MOCVD). The property of diffusion barrier of RFsputtered (PVD) TiN is better than that of metal organic chemical vapor deposited (MOCVD) TiN thin films. Also the property of diffusion barrier of PVD (111) textured TiN is better than that of PVD (100) textured TiN thin films on oxidized Si wafer
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    s.l. ; Stafa-Zurich, Switzerland
    Materials science forum Vol. 495-497 (Sept. 2005), p. 1371-1376 
    ISSN: 1662-9752
    Source: Scientific.Net: Materials Science & Technology / Trans Tech Publications Archiv 1984-2008
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: TiN thin films are widely used as a coating material due to their good mechanical andconductivity properties, high thermal properties, strong erosion and corrosion resistance. Also TiN has been used in Si devices as a diffusion barrier material for Al and Cu-based metallization. The uniform and dense structure of thin films is influenced by the texture of films. It was good to have uniform and dense structure and bad to have an open columnar structure in TiN thin films. Therefore, the property of diffusion barrier of the TiN films in semiconductor also is related to the texture and microstructure of TiN coated layer. In this study, the relationship between the texture and microstructure and the best diffusion barrier propertiy of TiN coated films (by PVD and MOCVD) on semiconductor devices (Cu/TiN/SiO2/Si layer) were investigated under different processing conditions and textures. The property of diffusion barrier for Cu of physical vapor deposited TiN thin films is better than that of metal organic chemical vapor deposited TiN thin films. Also the property of diffusion barrier for Cu of (111) textured TiN thin films is better than that of (200) textured TiN thin films
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...