Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Journal of Chromatography A 123 (1976), S. 119-128 
    ISSN: 0021-9673
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Solid State Communications 66 (1988), S. 237-240 
    ISSN: 0038-1098
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Biochimica et Biophysica Acta (BBA)/General Subjects 444 (1976), S. 618-622 
    ISSN: 0304-4165
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology , Chemistry and Pharmacology , Medicine , Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Computational mechanics 3 (1988), S. 331-342 
    ISSN: 1432-0924
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract Recently the authors have derived various new types of path independent integrals in which the theoretical limitations of the so-calledJ integral are overcome. First, for elastodynamic crack problems, a path independent integralJ′ which has the physical meaning of energy release rate was derived. Later, more general forms of path independent integralsT * andT were derived, which are valid for any constitutive relation under quasi-static as well as dynamic conditions. This paper presents the theoretical and computational aspects of these integrals, of relevance in non-linear dynamic fracture mechanics. An efficient solution technique is also presented for non-linear dynamic finite element method in which a factorization of the assembled stiffness matrix is done only once throughout the computation for a given mesh pattern. Finite element analyses were carried out for an example problem of a center-cracked plate subject to a uniaxial impact loading. The material behavior was modeled by three different constitutive relations such as linear-elastic, elastic-plastic, elastic-viscoplastic cases. The applicability of theT * integral to non-linear dynamic fracture mechanics was shown with the numerical results.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Journal of materials science 28 (1993), S. 684-690 
    ISSN: 1573-4803
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract The incorporation process and the wettability for an SiC particles/aluminium alloy system were measured. The wettability between SiC particle and liquid aluminium was evaluated by the time required for the particulate incorporation. The incorporation time could be measured from a stirring time-melt temperature chart. Magnesium and titanium shortened the incorporation time of α -SiC particles into liquid aluminium and improved the wettability because of their strong affinity for SiC. Copper and zinc prolonged the incorporation time and no reaction products were found in the matrix. Furthermore, surface active elements with weak affinity for SiC (lead and bismuth) extremely prolonged the incorporation time because these elements prevent the reaction at the interface, whereas lithium shortened the incorporation time remarkably.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Journal of inherited metabolic disease 5 (1982), S. 81-82 
    ISSN: 1573-2665
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Naturwissenschaften 71 (1984), S. 154-156 
    ISSN: 1432-1904
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Natural Sciences in General
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Journal of materials science 32 (1997), S. 6283-6289 
    ISSN: 1573-4803
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract The infiltration of solid powder mixtures with molten aluminium has been investigated as a potential route for the synthesis of ceramic/metal composites. Either titanium or tantalum powder was mixed with boron nitride flakes for the reaction powder mixture. The infiltration occurred spontaneously at 1473K for both [Ti+BN] and [Ta+BN] powder mixtures. Owing to reactions between the starting materials, both boride and nitride ceramics were produced in molten aluminium. TiB2 and AlN were produced from the [Ti+BN] powder mixture, and TaB2 and AlN were produced from the [Ta+BN] powder mixture. When the [Ti+BN] powder mixture was used, a reaction producing Al3Ti took place immediately after the infiltration of the molten aluminium, and a subsequent reaction producing TiB2 and AlN proceeded gradually. The time required to convert BN flakes to TiB2 and AlN particles at 1473K was in the range of 1800–3600 s. On the other hand, when the [Ta+BN] powder mixture was used, there was an initial incubation period to allow the tantalum and molten aluminium to react with each other. The reaction between tantalum, BN and aluminium took place after this incubation period.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Springer
    Journal of materials science 32 (1997), S. 6279-6282 
    ISSN: 1573-4803
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract Reactive infiltration of a NiO-base blended powder with molten aluminium was attempted at 1673 K in order to obtain Al2O3 matrix composites containing a dispersion of Al3Ni, AlNi and/or AlNi3. The NiO powder was barely infiltrated by the molten aluminium after a 3600 s holding time at 1673 K. A continuous layer of Al2O3 was observed to exist at the infiltration front, which prevented any further infiltration. TiB2 particles were added to the NiO powder in order to absorb the heat of reaction between NiO and aluminium. When the TiB2 particle content in the [NiO+TiB2] powder blend was greater than 20 vol%, spontaneous infiltration occurred completely. Thus, it was shown that the addition of the TiB2 particles assisted in the spontaneous infiltration. The specimens produced by the in situ reaction consisted of Al2O3, TiB2 and Al3Ni. Al3Ni was mainly located between the TiB2 and Al2O3. The effect of the TiB2 addition on the infiltration kinetics was to decrease the maximum attainable temperature caused by the exothermic reaction. This in turn prevented the formation of a continuous Al2O3 film at the infiltration front. This resulted in the production of pathways for the infiltration of the molten aluminium and made possible the complete infiltration.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...