Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: Previous studies have indicated that recombinant cellular prion protein (PrPC), as well as a synthetic peptide of PrPC, affects intracellular calcium homeostasis. To analyze whether calcium homeostasis in neurons is also affected by a loss of PrPC, we performed microfluorometric calcium measurements on cultured cerebellar granule cells derived from prion protein-deficient (Prnp0/0) mice. The resting concentration of intracellular free calcium ([Ca2+]i) was found to be slightly, but significantly, reduced in Prnp0/0 mouse granule cell neurites. Moreover, we observed a highly significant reduction in the [Ca2+]i increase after high potassium depolarization. Pharmacological studies further revealed that the L-type specific blocker nifedipine, which reduces the depolarization-induced [Ca2+]i increase by 66% in wild-type granule cell somas, has no effect on [Ca2+]i in Prnp0/0 mouse granule cells. Patch-clamp measurements, however, did not reveal a reduced calcium influx through voltage-gated calcium channels in Prnp0/0 mice. These data clearly indicate that loss of PrPC alters the intracellular calcium homeostasis of cultured cerebellar granule cells. There is no evidence, though, that this change is due to a direct alteration of voltage-gated calcium channels.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Journal of neurochemistry 87 (2003), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: The prion protein (PrPC) has a primary role in the pathogenesis of transmissible spongiform encephalopathies. Here we analysed in detail the effect of recombinant PrPC and N- and C-terminal fragments of PrPC on the whole-cell current amplitude through voltage-gated calcium channels (VGCCs) of cultured wild-type cerebellar granule cells. With the application of full-length recombinant PrPC (50–500 nm), a highly significant reduction of the whole-cell current amplitude was observed in a dose-dependent manner. Amplitude reduction was abolished when cells were pre-incubated with nifedipine, a specific blocker of voltage-gated L-type calcium channels. N-terminal PrP fragments also led to a dose-dependent reduction of the maximal current amplitude, whereas a C-terminal fragment did not affect the current amplitude. These data demonstrate that nanomolar concentrations of PrPC modulate L-type VGCCs in mouse cerebellar granule cells, an effect that is dependent upon the copper-binding amino-terminal domain of PrPC.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...