Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Fluids 6 (1994), S. 1331-1356 
    ISSN: 1089-7666
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The stationary laminar flamelet model and the conditional moment closure are two salient approaches to the decoupling of the chemistry problem from the turbulence problem. These two models are investigated using direct numerical simulations. The results and their analyses show that a full understanding of the validity of the stationary laminar flamelet model cannot be reached based upon the reaction zone thickness in Z space. A new condition regarding the quasisteadiness of the chemical reaction is derived and applied to the interpretation of the data. The conditional moment closure leads to excellent data predictions provided the average scalar dissipation rate conditioned on the mixture fraction is properly modeled.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Physics of Fluids 13 (2001), S. 1450-1465 
    ISSN: 1089-7666
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Understanding the passive reaction of two chemical species in shear-free turbulence with order unity Schmidt number is important in atmospheric and turbulent combustion research. The canonical configuration considered here is the reacting scalar mixing layer; in this problem two initially separated species mix and react downstream of a turbulence generating grid in a wind tunnel. A conserved scalar in this flow is, with some restrictions, analogous to temperature in a thermal mixing layer, and considerable laboratory data are available on the latter. In this paper, results are reported from high resolution, direct numerical simulations in which the evolution of the conserved scalar field accurately matches that of the temperature field in existing laboratory experiments. Superimposed on the flow are passive, single-step reactions with a wide range of activation energies and stoichiometric ratios (r). The resulting data include species concentrations as a function of three spatial dimensions plus time, and statistical moments and spectra of all species. Several aspects of the flow are investigated here with the conclusions that (1) reactions in which r≠1 are more accurately modeled by frozen and equilibrium chemistry limits than are reactions in which r=1, (2) an existing definition of a reduced Damköhler number that includes temperature and stoichiometry effects is a useful measure of reaction rate, and (3) existing theoretical models for predicting the coherence and phase of fuel-oxidizer cross-spectra and the spectrum of the equilibrium fuel mass fraction when r=1 yield accurate predictions. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Physics Letters 6 (1963), S. 51-52 
    ISSN: 0031-9163
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Physics Letters 2 (1962), S. 266-268 
    ISSN: 0031-9163
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Physics Letters 13 (1964), S. 223-224 
    ISSN: 0031-9163
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Physica 32 (1966), S. 16-26 
    ISSN: 0031-8914
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Physica 32 (1966), S. 1571-1581 
    ISSN: 0031-8914
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Flow, turbulence and combustion 60 (1998), S. 105-122 
    ISSN: 1573-1987
    Keywords: large-eddy simulations ; reacting flows ; subgrid-scale models
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract A method for predicting filtered chemical species concentrations and filtered reaction rates in Large-Eddy Simulations of non-premixed, non-isothermal, turbulent reacting flows has been demonstrated to be quite accurate for higher Damköhler numbers. This subgrid-scale model is based on flamelet theory and uses presumed forms for both the dissipation rate and subgrid-scale probability density function of a conserved scalar. Inputs to the model are the chemistry rates, the Favre-filtered scalar, and its subgrid-scale variance and filtered dissipation rate. In this paper, models for the filtered dissipation rate and subgrid-scale variance are evaluated by filtering data from 5123-point Direct Numerical Simulations of a single-step, isothermal reaction developing in the isotropic, incompressible, decaying turbulence field of Comte-Bellot and Corrsin. Both the subgrid-scale variance and the filtered dissipation rate models (the ”sub-models”) are found to be reasonably accurate. The effect of the errors introduced by the sub-models on the overall model is found to be small, and the overall model is shown to accurately predict the spatial average of the filtered species concentrations over a wide range of times.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...