Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Annals of the New York Academy of Sciences 733 (1994), S. 0 
    ISSN: 1749-6632
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Natural Sciences in General
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Muscarinic acetylcholine receptors (mAChRs) play an important role in regulating the release of acetylcholine (ACh) in various tissues. We used subtype-specific antibodies and a fluorescent-labelled muscarinic toxin to demonstrate that mammalian neuromuscular junction expresses mAChR subtypes M1 to M4, and that localization of all subtypes is highly restricted to the innervated part of the muscle. To elucidate the roles of the mAChR subtypes regulating ACh release, we measured the mean quantal content of endplate potentials in isolated mouse phrenic–hemidiaphragm preparations in which release was reduced by a low Ca2+/high Mg2+ medium. Muscarine decreased evoked ACh release in normal junctions but, depending on the concentration, reduced or increased transmitter release in collagen Q-deficient junctions completely lacking acetylcholinesterase (AChE). Both effects were also seen in normal junctions when AChE was inhibited by various doses of fasciculin-2. Block of mAChRs by atropine had no effect on evoked release at normal junctions, but decreased release at junctions lacking AChE. The muscarine-elicited depression of ACh release in normal junctions was completely abolished by pertussis toxin or methoctramine pretreatment, but was not affected by muscarinic toxin MT-3, thus indicating the involvement of the M2 mAChR. The muscarine-induced increase of ACh release in AChE-deficient junctions was not affected by pertussis toxin, but was completely blocked by MT-7, a specific M1 mAChR antagonist. Our results show that the M1 and M2 mAChRs have opposite presynaptic functions in modulating quantal ACh release, and that regulation of release by the two receptor subtypes depends on the functional state of AChE at the neuromuscular junction.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Development genes and evolution 198 (1990), S. 411-419 
    ISSN: 1432-041X
    Keywords: Drosophila ; Embryonic cells ; Ca2+-dependent cell aggregation ; Inhibiting antibodies ; Aggregation proteins
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary By using an in vitro functional assay, we have shown that Drosophila embryonic cells possess Ca2+-dependent adhesive sites, which resemble in many respects those described for vertebrate cells and tissues. The cells, obtained by mechanical disruption of gastrulastage embryos, form aggregates within 30 min when maintained under constant rolling. The aggregation is completely dependent on the presence of Ca2+ in the medium. In its absence, the cells remain dispersed but the process is reversible by readdition of Ca2+. In addition the aggregation is temperature-dependent. No aggregation occurs at 4° C but it can be restored by raising the temperature to 25° C. These properties are characteristic of these cells: established cell lines do not aggregate under the same conditions and mixing of cell lines and embryonic cells does not result in chimeric aggregates, thus pointing towards cell-type selectivity with respect to aggregability. Observations in electron microscopy have shown that the embryonic cells in the aggregates tightly adhere to one another and form, as early as after 30 min, maculae adherens junctions. Drosophila embryonic cells have adhesion sites that are protected from trypsin proteolysis in the presence of Ca2+ and sensitive in its absence. The cells' aggregation can be inhibited by a mouse antiserum directed against cell-surface components and a good correlation exists between neutralization of the inhibitory activity of the antiserum and the presence of trypsin-sensitive sites on the cells. These data are in favour of cell-cell adhesion mediated by specific adhesion proteins.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...