Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-5079
    Keywords: Chlamydomonas reinhardtii ; LHC II phosphorylation ; mutagenesis ; Photosystem II redox control ; state 2 to state 1 transition ; transformation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Oxygenic photosynthetic organisms adapt to varying light conditions by changing the distribution of light energy between Photosystem II (PS II) and photosystem I (PS I) during so-called state transitions. To identify the genes involved in this process, we have exploited a simple chlorophyll fluorescence video-imaging technique to screen a library of nuclear mutants of Chlamydomonas reinhardtii for colonies grown on agar plates that are disturbed in their ability to regulate light energy distribution between PS I and PS II. Subsequent modulated fluorescence measurements at room temperature and 77 K fluorescence emission spectra confirmed that 5 mutants (0.025% of total number screened) were defective in state transitions. [32P]orthophosphate phosphorylation experiments in vivo revealed that in one of these mutants, designated stm1, the level of LHC II polypeptide phosphorylation was drastically reduced compared with wild type. Despite WT levels of PS I and PS II, stm1 grew photoautotrophically at reduced rates, compared with WT especially under low light conditions, which is consistent with an important physiological role for state transitions. Our results highlight the feasibility of video imaging in tandem with mutagenesis as a means of identifying the genes involved in controlling state transitions in eukaryotic photosynthetic organisms.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...