Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 113 (2000), S. 6509-6527 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: We introduce an excited state theory for the optimized orbital coupled cluster doubles (OO-CCD) and valence optimized orbital coupled cluster doubles (VOO-CCD) models. The equations for transition energies are derived using a similarity transformed Hamiltonian. The effects of orbital relaxation are discussed. We present results for several single-reference molecules (H2O, CH2O, C2H4O, C2H4, BeO), as well as for molecules with significant nondynamical correlation in the ground state (CH+, BH, A˜ 1A1 CH2), and for rectangular O4+. We find that: (i) OO-CCD excitation energies are very close to CCSD excitation energies; (ii) similarly to the complete active space SCF (CASSCF) model, the effects of orbital relaxation are very important for VOO-CCD excited states such that the excitation energies calculated by VOO-CCD and CASSCF with orbitals optimized for the ground state are very close to each other and unsatisfactory; (iii) the VOO-CCD model with an approximate treatment of orbital relaxation describes singly (valence and Rydberg) and doubly (valence) excited states within errors of 0.2–1.0 eV at equilibrium geometries and along bond-breaking coordinates; (iv) the above accuracy of the VOO-CCD model does not degrade as molecules or basis sets grow in size; (v) the shapes of potential energy surfaces around excited states minima are reproduced well by VOO-CCD model suggesting the use of this method for excited states geometry optimization. © 2000 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 113 (2000), S. 6052-6062 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: The propensity of approximate solutions of the electronic Schrödinger equation to break spin-symmetry is directly related to the quality of the approximate wave function, and thus can be used as a diagnostic tool. The quasi-variational nature of the (valence) optimized orbitals coupled-cluster doubles methods, (V)OO-CCD, enables a discussion of the stability of coupled-cluster wave functions in terms of both spin-contamination and a corresponding energy lowering relative to the pure spin solutions. The spin-contamination of (V)OO-CCD models has been studied for bond-breaking processes and diradicals. The main findings are: (i) The OO-CCD method is stable for a relatively large range of nuclear distortions and is capable of eliminating even very large spin-contamination of the unrestricted Hartree–Fock solution given that the molecular electronic configuration remains essentially single-reference. When a spin-contaminated solution arises, the energy splitting rapidly becomes large and 〈S(circumflex)2〉 approaches the Hartree–Fock value; (ii) The VOO-CCD method, which is designed to approximate a multi-reference model, remains stable over broader ranges; however, for pure diradicals it becomes unstable. In these cases, spin-contamination is also very large, but the energy lowering for the spin-unrestricted solutions is negligible; (iii) Higher order corrections described by perturbation theory lead to smaller energy splittings between restricted and unrestricted (V)OO-CCD energies. However, in case of spin-contaminated (V)OO-CCD solutions, these corrections may lead to unphysical shapes of the potential energy surfaces. Thus, in order to quantitatively characterize the quality of the wave functions, both spin-contamination and energy lowering due to the breaking of spin-symmetry must be considered. © 2000 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 109 (1998), S. 10669-10678 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: The nondynamical correlation energy may be defined as the difference between full configuration interaction within the space of all valence orbitals and a single determinant of molecular orbitals (Hartree–Fock theory). In order to describe bond breaking, diradicals, and other electronic structure problems where Hartree–Fock theory fails, a reliable description of nondynamical correlation is essential as a starting point. Unfortunately, the exact calculation of nondynamical correlation energy, as defined above, involves computational complexity that grows exponentially with molecular size and is thus unfeasible beyond systems of just two or three heavy atoms. We introduce a new hierarchy of feasible approximations to the nondynamical correlation energy based on coupled-cluster theory with variationally optimized orbitals. The simplest member of this hierarchy involves connected double excitations within the variationally optimized valence active space and may be denoted as VOO-CCD, or VOD. VOO-CCD is size-consistent, has computational complexity proportional to the sixth power of molecule size, and is expected to accurately approximate the nondynamical correlation energy in such cases as single bond dissociation, diradicals, and anti-ferromagnetic coupling. We report details of our implementation of VOO-CCD and illustrate that it does indeed accurately recover the nondynamical correlation energy for challenging multireference problems such as the torsion of ethylene and chemical bond breaking. © 1998 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 106 (1997), S. 6574-6587 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: The photodissociation of HCl in solid Ar is studied by non-adiabatic Molecular Dynamics simulations, based on a surface-hopping treatment of transitions between different electronic states. The relevant 12 potential energy surfaces and the non-adiabatic interactions between them were generated by a Diatomics-in-Molecules (DIM) approach, which incorporated also spin-orbit coupling. The focus of the study is on the non-adiabatic transitions, and on their role both in the cage-exit of the H atom, and in the recombination process. It is found that non-adiabatic transitions occur very frequently. In some of the trajectories, all the 12 electronic states are visited during the timescale studied. At least one non-adiabatic transition was found to occur even in the fastest cage-exit events. The other main results are: (1) The total yields for photofragment separation (by cage exit of the H atom) and for H+Cl recombination onto the ground state are roughly equal in the conditions used. (2) The cage exit events take place in the time-window between ∼70 fs and ∼550 fs after the excitation pulse, and are thus all at least somewhat delayed. The recombination events span a much broader time-window, from almost immediately after excitation, and up to ∼1100 fs and beyond. (3) The electronic energy relaxation events during the process depend significantly on symmetry and interactions of the states involved, and not only on the energy gaps between them. (4) Different electronic states reached in the course of the process exhibit different propensities with regard to the recombination versus cage exit outcome. (5) Spin-orbit interactions, and spin-forbidden transitions play an important role in the process, especially for recombination events. © 1997 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 110 (1999), S. 11047-11053 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: The photodissociation of HCl adsorbed on the surface of an Ar12 cluster is studied by semiclassical molecular dynamics simulations, using a surface-hopping approach for the nonadiabatic transitions. The DIM method is used to construct the 12 potential energy surfaces that are involved, and the nonadiabatic couplings. The results are compared with previous studies on HCl embedded inside Ar clusters and on the triatomic Ar–HCl cluster. The main findings are the following: (1) There is a yield of about 1% for recombination onto the ground electronic state of HCl, roughly the same as for HCl embedded inside Ar12. (2) Photodissociation lifetimes much longer than for Ar–HCl are found. (3) The kinetic energy distribution of the H atom shows large energy transfer to the cluster, greater than in the case of HCl in the embedded geometry in (Ar)12HCl. (4) An interesting mechanism leads to the formation of some fraction of very "hot" Cl atoms. (5) About 10% of the Cl is left trapped in (Ar)mCl clusters. (6) The branching ratio P1/2:P3/2 for the Cl atoms that leave the cluster shows electronic cooling compared to the isolated HCl molecule case. The results throw light on the role of local geometry in photodissociation/recombination processes, and in particular on the mechanisms pertinent in the case of surface-adsorbed species. The nature of the results, showing strong cage effects at the surface geometries is to a large extent a consequence of the encapsulation of the H atom, obtained for the structure of the (Ar)12HCl cluster. © 1999 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 109 (1998), S. 4171-4181 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: We describe an alternative procedure for obtaining approximate Brueckner orbitals in ab initio electronic structure theory. Whereas approximate Brueckner orbitals have traditionally been obtained by mixing the orbitals until the coefficients of singly substituted determinants in the many-electron wave function become zero, we remove singly substituted determinants at the outset and obtain orbitals which minimize the total electronic energy. Such orbitals may be described as variational Brueckner orbitals. These two procedures yield the same set of exact Brueckner orbitals in the full configuration interaction limit but differ for truncated wave functions. We consider the simplest variant of this approach in the context of coupled-cluster theory, optimizing orbitals for the coupled-cluster doubles (CCD) model. An efficient new method is presented for solving the coupled equations defining the energy, doubles amplitudes, and orbital mixing parameters. Results for several small molecules indicate nearly identical performance between the traditional Brueckner CCD method and the variational Brueckner orbital CCD approach. However, variational Brueckner orbitals offer certain advantages: they simplify analytic gradients by removing the need to solve the coupled-perturbed Brueckner coupled-cluster equations for the orbital response, and their straightforward extensions for inactive orbitals suggests possible uses in size-extensive models of nondynamical electron correlation. Application to O4+ demonstrates the utility of variational Brueckner orbitals in symmetry breaking cases. © 1998 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 116 (2002), S. 3194-3203 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: We present perturbative corrections to a recently introduced spin–flip self-consistent field (SF-SCF) wave function. The spin–flip model describes both closed and open shell singlet states within a single reference formalism as spin–flipping, e.g., α→β, excitations from a triplet (Ms=1) reference state for which both dynamical and nondynamical correlation effects are much smaller than for the corresponding singlet state. The simplest spin–flip model employs a SCF wave function for the reference state, and the resulting equations for target states are therefore identical to configuration interaction singles (in spin–orbital form). While being a qualitatively correct zero-order wave function, SF-SCF should be augmented by dynamical correlation corrections to achieve a quantitative accuracy. The results demonstrate that the second-order approximation to the more theoretically complete spin–flip coupled-cluster model (truncated at double substitutions) represents a systematic improvement over the SF-SCF model. © 2002 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 115 (2001), S. 7485-7494 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: Electronically excited states in CH2Cl and CH2F radicals are studied at the EOM–CCSD/6-311(3+, 3+)G(3df, 3pd) level of theory. Excited states' characters and changes in the electronic spectrum in the CH3→CH2F→CH2Cl sequence are interpreted in terms of a simple molecular orbital picture. The key factors determining the electronic structure of these radicals are (i) the presence of lone pairs on the halogen and (ii) how strongly these lone pairs are bound to the halogen. In CH2Cl, the small energy gap between the unpaired electron on carbon and the lone pair on chlorine results in additional π-bonding between C and Cl. Moreover, the relatively weak binding energy of the chlorine's lone pairs is responsible for the presence of several low-lying valence states in CH2Cl. In CH2F, where the lone pairs have a considerably lower energy, no additional bonding is found. The character of two lowest valence states in CH2F is similar to that of the lowest states in CH2Cl, but the excitation energies are considerably higher. The low-lying Rydberg states appear to be similar in all three radicals. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...