Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: Molecular dynamics simulations and fluorescence anisotropy decay measurements are used to investigate the rotational diffusion of anthracene in two organic solvents—cyclohexane and 2-propanol—at several temperatures. Molecular dynamics simulations of 1 ns length were performed for anthracene in cyclohexane (at 280, 296, and 310 K) and in 2-propanol (at 296 K). The calculated time constants for reorientation of the short in-plane axis were 7–9 and 11–16 ps at 296 K in cyclohexane and 2-propanol, respectively, in excellent agreement with corresponding fluorescence depolarization measurements of 8 and 14 ps. The measured rotational reorientation times and the calculated average rotational diffusion coefficients varied in accord with Debye–Stokes–Einstein theory. Their magnitudes were close to values predicted for an ellipsoid of shape and size equivalent to an anthracene molecule, and exhibited predictable variation with external conditions—increasing with temperature and decreasing with solvent viscosity. However, analysis of the calculated rotational diffusion coefficients for the individual molecular axes gave a more complex picture. The diffusion was highly anisotropic and changes in temperature and solvent type led to nonuniform variation of the diffusion coefficients. The nature of these changes was rationalized based on analysis of variation of solvation patterns with temperature and solvent. © 1997 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Theoretical chemistry accounts 101 (1999), S. 274-281 
    ISSN: 1432-2234
    Keywords: Key words: Free energy simulations ; DPDPE peptide ; Peptide conformational equilibria in solution ; Conformational free energy ; Disulfide bonds
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract. We have calculated the free energy differences between four conformers of the linear form of the opioid pentapeptide DPDPE in aqueous solution. The conformers are Cyc, representing the structure adopted by the linear peptide prior to disulfide bond formation, β C and β E , two slightly different β-turns previously identified in unconstrained molecular dynamics simulations, and Ext, an extended structure. Our simulations indicate that β E is the most stable of the studied conformers of linear DPDPE in aqueous solution, with β C , Cyc and Ext having free energies higher by 2.3, 6.3, and 28.2 kcal/mol, respectively. The free energy differences of 4.0 kcal/mol between β C and Cyc, and 6.3 kcal/mol between β E and Cyc, reflect the cost of pre-organizing the linear peptide into a conformation conducive for disulfide bond formation. Such a conformational change is a pre-requisite for the chemical reaction of S–S bond formation to proceed. The relatively low population of the cyclic-like structure agrees qualitatively with observed lower potency and different receptor specificity of the linear form relative to the cyclic peptide, and with previous unconstrained simulation results. Free energy component analysis indicates that the moderate stability difference of 4.0–6.3 kcal/mol between the β-turns and the cyclic-like structure results from cancellation of two large opposing effects. In accord with intuition, the relaxed β-turns have conformational strain 43–45 kcal/mol lower than the Cyc structure. However, the cyclic-like conformer interacts with water about 39 kcal/mol strongly than the open β-turns. Our simulations are the first application of the recently developed multidimensional conformational free energy thermodynamic integration (CFTI) protocol to a solvated system, with fast convergence of the free energy obtained by fixing all flexible dihedrals. Additionally, the availability of the CFTI multidimensional free energy gradient leads to a new decomposition scheme, giving the contribution of each fixed dihedral to the overall free energy change and providing additional insight into the microscopic mechanisms of the studied processes.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York : Wiley-Blackwell
    Biopolymers 39 (1996), S. 221-242 
    ISSN: 0006-3525
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Molecular dynamics simulations have been used to investigate the thermodynamic stability of axial contacts in sickle-cell hemoglobin (HbS). Free energy changes were evaluated for the point mutation β121 Glu → Gln in the axial contact region of HbS crystals. The calculations predict a free energy change of -3.6 kcal/mol per contact for the mutation, which is in qualitative agreement with experimental observations of aggravated sickling found in the double mutant Hb D Los Angeles (β6 Glu → Val, β121 Glu → Gln) relative to HbS (β6 Glu → Val). The β121 Glu is sequestered in a salt link with β17 Lys located on the same polypeptide chain, making the Glu interactions with its surroundings similar in aggregates and individual hemoglobins. Due to this cancellation of the large electrostatic Glu contributions, the weak nonspecific interactions between the Gln and the neighboring polypeptide chain are the main contributing factor to the enhanced aggregation of Hb D Los Angeles relative to HbS. Together with the previous study of the lateral contact [K. Kuczera et al. (1990) Proceedings of the National Academy of Science USA, Vol. 87, pp. 8481-8485], the present results provide a more complete picture of the forces driving the sickling aggregation. A comparison of different treatments of internal flexibility in free energy simulations and analysis of rate of convergence of the different calculated properties has also been performed. © 1996 John Wiley & Sons, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 16 (1995), S. 1192-1209 
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: In molecular dynamics simulations, the fastest components of the potential field impose severe restrictions on the stability and hence the speed of computational methods. One possibility for treating this problem is to replace the fastest components with algebraic length constraints. In this article the resulting systems of mixed differential and algebraic equations are studied. Commonly used discretization schemes for constrained Hamiltonian systems are discussed. The form of the nonlinear equations is examined in detail and used to give convergence results for the traditional nonlinear solution technique SHAKE iteration and for a modification based on successive overrelaxation (SOR). A simple adaptive algorithm for finding the optimal relaxation parameter is presented. Alternative direct methods using sparse matrix techniques are discussed. Numerical results are given for the new techniques, which have been implemented in the molecular modeling software package CHARMM and show as much as twofold improvement over SHAKE iteration. © 1995 John Wiley & Sons, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Computational Chemistry 17 (1996), S. 1726-1749 
    ISSN: 0192-8651
    Keywords: Chemistry ; Theoretical, Physical and Computational Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: A new thermodynamic integration approach to conformational free energy simulations is presented. The method is applicable both to one-dimensional cases (reaction coordinates) and multidimensional situations (free energy surfaces). Analysis of the properties of the thermodynamic integration algorithm is used to formulate methods of calculating multidimensional free energy gradients. The method is applied to calculate the free energy profile for rotation around the central C—C bond of n-butane in the gas and liquid phase and to generate maps of the 18-dimensional free energy gradient with respect to all nine φ and nine ψ dihedrals of the decaalanine and deca-α-methylalanine peptides in vacuum. For n-butane essentially no change in the gauche-trans equilibrium between the gas and liquid is predicted within the CHARMM explicit hydrogen model, with the thermodynamic integration, thermodynamic perturbation, and direct simulation methods yielding free energy profiles that are identical within errors. For the decapeptides the right-handed helical region of conformational space is investigated. For decaalanine a minimum on the free energy surface is found in the vicinity of (φ, ψ) = (-64.5°, -42.5°) in the α-helix region; no minimum exists for 310-helix-type conformers. For deca-α-methylalanine free energy minima corresponding to both the α-helix at ( - 55.5°, - 51.5°) and the 310-helix at ( - 54°, - 29°) are found; the α-helix state is favored by about 4 kcal/mol and the barrier for the concerted 310-helix → α-helix transition is about 3 kcal/mol. The α-methylation also considerably increases the rigidity of the α-helix with respect to deformations. The computational efficiency, ease of generalization to calculations of multidimensional gradients, and analytical capability due to component analysis of free energy differences make the method a novel, powerful tool to improve the basic understanding of conformational equilibria of flexible molecules in condensed phases. A related scheme for energy minimization in the presence of holonomic constraints is also presented, allowing generation of adiabatic energy surfaces in constrained systems. © 1996 by John Wiley & Sons, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...