Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1434-7636
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Abstract The main objective of this paper is the discussion of two different strategies of simulating the constitutive behavior of granular assemblies. For this, we will focus on discrete particle methods which are widely used in physical science and on continuum–based microplane models which are applied by the engineering community. After deriving the overall constitutive equations based on Voigt’s hypothesis, special focus will be dedicated to the comparison of the relations between the microscopic and macroscopic quantities of each model. It will be demonstrated, that the two basically different modelling techniques lead to remarkably similar results for elastic as well as elasto–plastic material behavior.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Mechanics of Cohesive-frictional Materials 3 (1998), S. 343-364 
    ISSN: 1082-5010
    Keywords: concrete modelling ; microplane model ; anisotropic damage ; consistent linearization ; localization analysis ; Engineering ; Civil and Mechanical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Architecture, Civil Engineering, Surveying , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: The paper addresses the microplane model in the context of localization analysis. Capable of reproducing experimental results of concrete specimens, the microplane model includes anisotropic damage in a natural and conceptually simple and explicit way. However, the efficiency of former microplane implementations suffers from the expense of the solution procedure being based on the secant stiffness method. Within this paper, the macroscopic constitutive equation derived by kinematically constraining the microplane strains to the macroscopic strain tensor is consistently linearized resulting in quadratic convergence of the Newton-Raphson iteration for the equilibrium equations. A fully three-dimensional model will be presented and linearized incorporating the two-dimensional case in a natural fashion. Furthermore, the localization criterion is analysed, indicating locally the onset of localization in terms of the acoustic tensor. Several examples demonstrate the features of the microplane model in predicting the material behaviour of concrete in tension and compression as well as in shear. © 1998 John Wiley & Sons, Ltd.
    Additional Material: 17 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...