Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    The @journal of physical chemistry 〈Washington, DC〉 98 (1994), S. 11251-11255 
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    The @journal of physical chemistry 〈Washington, DC〉 98 (1994), S. 12059-12066 
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    The @journal of physical chemistry 〈Washington, DC〉 99 (1995), S. 9567-9575 
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 113 (2000), S. 11284-11292 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: In the chemical and petrochemical industries, Pt-based catalysts are very sensitive to sulfur poisoning. Synchrotron-based high-resolution photoemission, thermal desorption mass spectroscopy (TDS), and first-principles density-functional slab calculations were used to study the adsorption of sulfur on Pt(111) and a p(2×2)-Sn/Pt(111) surface alloy. Our results show important variations in the nature of the bonding of sulfur to Pt(111) depending on the coverage of the adsorbate. For small coverages, θS〈0.3 ML, atomic sulfur is the most stable species. The adsorbate is bonded to hollow sites, has a large adsorption energy (〉75 kcal/mol), and desorbs as S. The Pt–S bonds are mainly covalent but sulfur induces a significant decrease in the density of Pt 5d states near the Fermi level. When the sulfur coverage increases on the surface, θS〉0.4 ML, there is a substantial weakening in the Pt↔S interactions with a change in the adsorption site and a tendency to form S–S bonds. Desorption of S2 is now observed in TDS and the S2p core levels shift to higher binding energy. At coverages near a full monolayer, S2 is the most stable species on the surface and its adsorption energy is ∼45 kcal/mol. Similar trends are observed for the adsorption of sulfur on a p(2×2)-Sn/Pt(111) surface alloy, but the adsorbate↔substrate interactions are weaker than on Pt(111). The formation of Pt–Sn bonds reduces the reactivity of Pt toward sulfur. Electronic effects associated with bimetallic bonding can be useful for controlling or preventing sulfur poisoning. © 2000 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 108 (1998), S. 3064-3073 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: The reaction of S2 with Rh(111) and Cu/Rh(111) surfaces has been investigated using synchrotron-based high-resolution photoemission, thermal desorption mass spectroscopy and ab initio self-consistent-field calculations. At 100 K, the adsorption of S2 on Rh(111) produces multilayers of Sn species (n=2–8) that desorb between 300 and 400 K, leaving a film of RhSx on the sample. S2 dissociates upon adsorption on clean Rh(111) at 300 K. An adsorption complex in which S2 is bridge bonded to two adjacent Rh atoms (Rh–S–S–Rh) is probably the precursor state for the dissociation of the molecule. The larger the electron transfer from Rh(111) into the S2(2πg) orbitals, the bigger the adsorption energy of the molecule and the easier the cleavage of the S–S bond. On Rh(111) at 300 K, chemisorbed S is bonded to two dissimilar adsorption sites (hollow and probably bridge) that show well separated S 2p binding energies and different bonding interactions. Adsorption on bridge sites is observed only at S coverages above 0.5 ML, and precedes the formation of RhSx films. The bonding of S to Rh(111) induces a substantial decrease in the density of d states that the metal exhibits near the Fermi level, but the electronic perturbations are not as large as those found for S/Pt(111) and S/Pd(111). Cu adatoms significantly enhance the rate of sulfidation of Rh(111) through indirect Cu↔Rh↔S2 and direct Cu↔S–S↔Rh interactions. In the presence of Cu there is an increase in the thermal stability of sulfur on Rh(111). The adsorption of S2 on Cu/Rh(111) surfaces produces CuSy and RhSx species that exhibit a distinctive band structure and decompose at temperatures between 900 and 1100 K: CuSy/RhSx/Rh(111)→S2(gas) +Cu(gas)+S/Rh(111). © 1998 American Institute of Physics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...