Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-0614
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Summary Tissue plasminogen activator (t-PA) production induced by proteose peptone from IMR-90 cells was investigated. Cells monolayered on plastic surfaces had a higher ability to produce t-PA per unit cell compared to those grown tri-dimensionally on ceramic pieces. Furthermore, confluent monolayers of the cells, which suffered contact inhibition and resulted in limited growth, were available for t-PA production. Repeated batch production with microcarriers, on which the cells were almost confluent monolayers similar to those in T-flasks, was performed. Utilization of the cells, which had limited serum in the growth phase, resulted in an increase in production. Moreover, dilution of the basal components of the medium at initiation of the production phase markedly promoted t-PA production. The volumetric productivity was stable for 30 days at 100 IU/cm3 per day. The cells were then mostly retained on microcarriers. Thus, an effective and scalable method of t-PA production by normal fibroblast cells was developed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-0778
    Keywords: FM-3A cells ; high-density culture ; perfusion culture ; tangential-flow filtration
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Abstract A novel bioreactor system developed for high-density cultures of suspended mammalian cells is described using a tangential-flow filtration device outside the culture vessel to separate viable cells from spent medium. The filtration device is based on thin porous microfiltration membranes with a pore size of 0.20–0.65 μm. Because cells have a diameter of about 10–20 μm, they cannot permeate these membranes with the spent medium. So, allowing a perfusion culture to be created using this system. In most membrane filtration systems, clogging of the membranes has made long-term operation difficult. In this system, however, high pressure is not applied directly to the membrane, thus minimizing clogging. Also, clogging of the membrane was prevented by washing the membrane surface once a day, and increasing the membrane surface are. With this system, FM-3A cells were cultured and maintained at a high density of 3.0×107 cells/ml for two weeks, and a continuous culture was supported for as long as 34 days.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1573-0778
    Keywords: ceramic bed reactor ; human fibroblasts ; perfusion ; product inhibition ; t-PA
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Abstract Ceramic pieces composed of 99.5% Al2O3, 3 to 6 mm long, were found to be a good matrix for growth of the human embryonic lung diploid fibroblast, IMR-90 cells. The tissue plasminogen activator (t-PA) was secreted in DME medium containing proteose peptone as a t-PA inducer. In addition, production of t-PA was enhanced by increasing extracellular CaCl2, from 3.6 to 5.4 mM. In order to eliminate negative feed-back control caused by t-PA produced and thus raise productivity, perfusion cultivation was performed using a ceramic-packed bed column, with a recirculating vessel. The recirculating vessel was used to mix fresh medium with spent medium, and to control dissolved oxygen concentrations in the extracellular environment by stirring. In continuous production using the packed bed column with 2 kg of ceramics (Ø=H=150 mm), increasing dilution rate to 0.5 day-1 could reduce product inhibition at 3–4×105cells/ml. Cellular productivity of 560 IU/106cells/day was obtained over 40 days and corresponded to the volumetric productivity of 183 IU/ml/day.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...