Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Plant, cell & environment 15 (1992), S. 0 
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Many species of rainforest plants have an unusual form of leaf development such that leaves delay greening until after full leaf expansion. Chlorophyll accumulation was measured during leaf development in five woody rainforest species, three with white young leaves, and two with ‘normal’ greening. In the three species with white leaves, the chlorophyll content of the expanding leaves was about 0.4mg dm−2, whereas in the two species with green young leaves, chlorophyll content was about 2.1 mg dm−2. Chlorophyll accumulation in greenhouse and field experiments was independent of light level. During leaf expansion, species with delayed chloroplast development only absorb 18–25% of the maximum possible light, compared with 80% for species with normal greening. Furthermore, species with delayed greening have low chlorophyll contents and reduced absorption for at least 30 d after full expansion. At a PPFD typical of the forest under story, the photosynthetic light use efficiency based upon incident radiation was 0.030–0.036 for species with delayed chloroplast development and 0.068–0.085 for the two species with normal greening. The lower light use efficiency of white species was primarily due to decreased light absorption. However, they also had a slightly lower light use efficiency based upon absorbed radiation, suggesting that development of other components of the photo-synthetic apparatus also may be delayed. Despite the fact that delayed greening decreases light absorption and light use efficiency during leaf development, it is extremely common in shade-tolerant species. We suggest that an advantage of delayed greening is that resources are not invested in the leaf until it is fully expanded and better defended from herbivores.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-1793
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The temperate seagrass Zostera marina L. is common in coastal marine habitats characterized by the presence of reducing sediments. The roots of this seagrass grow in these anoxic sediments, yet eelgrass is highly productive. Through photosynthesis-dependent oxygen transport from leaves to roots, aerobic respiration is supported in eelgrass roots only during daylight; consequently, roots are subjected to diurnal periods of anoxia. Under anoxic root conditions, the amino acids alanine and γ-amino butyric acid accumulate within a few hours to account for 70% of the total amino acid pool, while glutamate and glutamine decline. Little ethanol is produced, and the pool size of the organic acid malate changes little or declines slowly. Upon the resumption of shoot photosynthesis and oxygen transport to the roots, the accumulated γ-amino butyric acid declines rapidly, glutamate and glutamine pools increase, and alanine declines over a 16-h period. These adaptive metabolic responses by eelgrass to diurnal root anoxia must contribute to the successful exploitation of shallow-water marine sediments that have excluded nearly all vascular plant groups. A metabolic scheme is presented that accounts for the observed changes in organic and amino acid pool sizes in response to anoxia.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Oecologia 121 (1999), S. 489-498 
    ISSN: 1432-1939
    Keywords: Key words Tropical ; Shade tolerance ; Quantum yield ; Leaf angle ; Leaf lifespan
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract  In tropical rainforests, the increased light associated with the formation of treefall gaps can have a critical impact on the growth and survivorship of understory plants. Here we examine both leaf-level and whole-plant responses to simulated light gap formation by two common shade-tolerant shrubs, Hybanthus prunifolius and Ouratea lucens. The species were chosen because they differed in leaf lifespans, a trait that has been correlated with a number of leaf- and plant-level processes. Ouratea leaves typically live about 5 years, while Hybanthus leaves live less than 1 year. Potted plants were placed in the understory shade for 2 years before transfer to a light gap. After 2 days in high light, leaves of both species showed substantial photoinhibition, including reduced CO2 fixation, F v/F m and light use efficiency, although photoinhibition was most severe in Hybanthus. After 17 days in high light, leaves of both species were no longer photoinhibited. In response to increased light, Ouratea made very few new leaves, but retained most of its old leaves which increased photosynthetic capacity by 50%. Within a few weeks of transfer to high light, Hybanthus had dropped nearly all of its shade leaves and made new leaves that had a 2.5-fold greater light-saturated photosynthetic rate. At 80 days after transfer, the number of new leaves was 4.9-fold the initial leaf number. After 80 days in high light, Hybanthus had approximately tenfold greater productivity than Ouratea when leaf area, photosynthetic capacity, and leaf dark respiration rate were all taken into account. Although both species are considered shade tolerant, we found that their growth responses were quite different following transfer from low to high light. The short-lived Hybanthus leaves were quickly dropped, and a new canopy of sun leaves was produced. In contrast, Ouratea showed little growth response at the whole-plant level, but a greater ability to tolerate light stress and acclimate at the leaf level. These differences are consistent with predictions based on leaf lifespan and are discussed within the context of other traits associated with shade-tolerant syndromes.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] For numerous taxa, species richness is much higher in tropical than in temperate zone habitats. A major challenge in community ecology and evolutionary biogeography is to reveal the mechanisms underlying these differences. For herbivorous insects, one such mechanism leading to an increased ...
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 113 (1989), S. 21-29 
    ISSN: 1573-5036
    Keywords: oxisol ; soil aeration ; soil CO2 concentration ; soil respiration measurements ; tropical rain forest
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Soil gas exchange was investigated in a lowland moist forest in Panama. Soil water table level and soil redox potentials indicate that the soils are not waterlogged. Substantial microspatial variation exists for soil respiration and soil CO2 concentration. During the rainy season, soil CO2 at 40 cm below the surface accumulates to 2.3%–4.6% and is correlated with rainfall during the previous two weeks. Temporal changes in soil CO2 are rapid, large and share similar trends between sampling points. Possible effects of soil CO2 changes on plant growth or phenology are discussed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...