Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: In previous work, it was shown that cytoplasmic acetylcholine decreased on stimulation of Torpedo electric organ or synaptosomes in a strictly calcium-dependent manner. This led to the hypothesis that the presynaptic membrane contained an element translocating acetylcholine when activated by calcium. To test this hypothesis, the presynaptic membrane constituents were incorporated into the membranes of liposomes filled with acetylcholine. The proteoliposomes thus obtained released the transmitter in response to a calcium influx. The kinetics and calcium dependency of acetylcholine release were comparable for proteoliposomes and synaptosomes. The presynaptic membrane element ensuring calcium-dependent acetylcholine release is most probably a protein, since it was susceptible to Pronase, but only when the protease had access to the intracellular face of the presynaptic membrane. Postsynaptic membrane fractions contained very low amounts of this protein. It was extracted from the presynaptic membrane under alkaline conditions in the form of a protein-lipid complex of large size and low density which was partially purified. The specificity of the calcium-dependent release for acetylcholine was tested with proteoliposomes filled with equal amounts of acetylcholine and choline or acetylcholine and ATP. In both cases, acetylcholine was released preferentially. After cholate solubilization and gel filtration, the protein ensuring the calcium-dependent acetylcholine release was recovered at a high apparent molecular weight (between 600,000 and 200,000 daltons), its apparent sedimentation coefficient being 17S after cholate elimination. This protein is probably an essential coin of the transmitter release mechanism. We propose to name it mediatophore.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of neurochemistry 55 (1990), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: The neuromuscular synapses of the rat sternomastoid muscles contain a membrane protein, mediatophore, that endows artificial membranes with a calcium-dependent acetylcholine release mechanism. Mediatophore and choline acetylase had similar distributions along the muscle. Sciatic nerve membranes contain mediatophore, and a purified preparation was obtained from the nerve.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of neurochemistry 37 (1981), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: The detection of acetylcholine (ACh) with a chemiluminescent procedure enables one to follow continuously the release of transmitter from stimulated synaptosomes and to study the compartmentation of ACh in resting and active nerve terminals. A compartment of ACh liberated almost entirely by a single freezing and thawing could be directly measured and compared with a compartment of ACh resistant to several cycles of freezing and thawing but liberated by a detergent (60–70% of the total). It is the compartment liberated by freezing and thawing that is reduced when synaptosomes are stimulated. Up to half the total synaptosomal ACh content is readily releasable provided the calcium entry is maintained, or if a strong releasing agent such as the venom of Glycera convoluta is used. In addition, it is shown that synaptosomes contain only negligible amounts of choline, and that the proportion of the two ACh compartments is not influenced by changing extracellular calcium just before their determination.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: A growing body of evidence suggests that modulation of certain proteins of the exocytotic machinery is, in part, involved in the biochemical changes that underlie long-term synaptic plasticity. We have previously shown that the induction of long-term potentiation (LTP) at perforant path to dentate granule cell synapses in the rat hippocampus induces changes in the mRNA levels of syntaxin 1B and synapsin I, known to be involved in neurotransmitter release. Immunohistochemical staining suggested that concomitant changes in these proteins occurred at mossy fibre synapses, downstream of those synapses at which LTP was induced, leading us to postulate that such a mechanism might underlie a form of transsynaptic plasticity. Here we have used a specific mossy-fibre synaptosome preparation to quantify levels of proteins and measure, using a chemiluminescent glutamate assay, depolarization-induced glutamate release from these synaptosomes after induction of LTP in the dentate gyrus in vivo. We show that 5 h after the induction of LTP, there is an increase in the protein levels of syntaxin 1B and, although to a lesser extent, the synapsins I and II, associated with an increase in depolarization-induced release of glutamate within these terminals. Increases in both the protein levels and glutamate release were not observed when dentate gyrus LTP was blocked by an NMDA receptor antagonist. From these results we propose a molecular mechanism for the propagation of synaptic plasticity through hippocampal circuits.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of neurochemistry 39 (1982), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: It is now possible to extend to mammalian tissues the chemilumi-nescent acetylcholine assay. Mammalian tissue extracts must be treated with oxidants (which is not necessary for electric organ extracts). The assay can then be performed as previously described (acetylcholinesterase hydrolyses acetylcholine; choline oxidase converts choline to betaine and H2O2, which gives off light in the presence of luminol and peroxidase). It is also shown that release experiments can be performed on mammalian tissue slices (mouse caudate nucleus) after the slice is washed in oxygenated saline solutions.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Annals of the New York Academy of Sciences 493 (1987), S. 0 
    ISSN: 1749-6632
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Natural Sciences in General
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1432-2013
    Keywords: Key words Zinc ; Synaptic transmission ; Torpedo electric organ ; Synaptosomes ; Acetylcholine release ; Calcium ; Mediatophore
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract  Treatment with 100 or 250 μM ZnCl2 irreversibly blocked neurotransmission in the Torpedo electric organ by inhibiting acetylcholine (ACh) release. In Zn2+-treated tissue, release failure did not result from impairment of Ca2+ entry since stimulation still provoked an accumulation of Ca2+. Also pretreatment of isolated synaptosomes with Zn2+ inhibited to the same extent the release elicited by KCl-evoked depolarisation and the release elicited by using the Ca2+ ionophore A23187. On the other hand, after application of A23187, Zn2+ by itself efficiently triggered ACh release from synaptosomes. This dual effect of Zn2+ was also observed to occur in proteoliposomes equipped with mediatophore (a protein of the presynaptic membrane characterised by its capability to support Ca2+-dependent transmitter release). Hence, Zn2+ mimicked two fundamental actions of Ca2+ on nerve terminals, which are: (1) the immediate activation of release, and (2) a more slowly developing desensitisation of release. Zn2+ was more powerful than Ca2+ for both actions. It is concluded that the dual action of Zn2+ on the mediatophore protein accounts at least in part for its complex effects on neurotransmission.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...