Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1524-475X
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: A central question in cell biology is how cells become senescent. After a finite number of cell divisions, normal cultured human cells enter a state of irreversible growth arrest, termed “replicative senescence.” Alternatively, oxidative stress in the form of hydrogen peroxide (H2O2) can render human dermal fibroblasts (HDFs) nonproliferative and quiescent, a phenomenon known as stress-induced premature senescence (SIPS). Although critical to the understanding of the pathophysiological basis of many diseases, there is no research to date that has simultaneously examined the interactions between age, oxidative stress, and SIPS. Therefore, the goals of this study were to examine in concert the interactions between these three factors in primary HDFs, and to test our central hypothesis that aging lowers the ability of primary HDFs to respond to oxidative stress. Our data provide, for the first time, evidence that aging dramatically reduces the capacity of primary HDFs to respond to the challenge of hydrogen peroxide. Specifically, aged HDFs showed decreased cell viability, decreased phosphorylation (activation) of pro-survival kinases (Akt and ERK 1/2), and increased entrance into a senescent state when compared with their younger counterparts. Another important conclusion of this study is that blockade of transforming growth factor-β1 had a pronounced “rescue effect” in the aged, preventing entrance of HDFs into cellular senescence.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-1211
    Keywords: Key words Leukocyte Ig-like receptors ; ILT ; Human Chromosome 19 ; Immunoglobulin superfamily ; Gene structure
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract  The leukocyte immunoglobulin (Ig)-like receptors (LIRs) comprise a family of cell surface receptors that couple to either activating or inhibitory signals depending on the nature of their transmembrane and cytoplasmic domains. We describe the organization and fine localization of the genes for LIR-1 and LIR-5, which are inhibitory receptors, and LIR-6, which is an activating receptor. The genomic organization of all three genes is highly conserved from the signal peptide through the membrane-proximal Ig domain but diverges thereafter depending on the inhibitory or activating nature of the gene product. The 3′ untranslated region of the gene for LIR-6 contains a 37-base pair repeat not present in the LIR-1 or LIR-5 genes. 5′ rapid amplification of cDNA ends defined the putative transcription initiation site of the LIR-5 gene, which is TATA-less. A nucleotide substitution in the LIR-5 gene led to loss of an intron present in the 5′ untranslated region of the LIR-1 and LIR-6 genes. Differences in the genomic structure of these three LIR genes suggests possible mechanisms for their differential expression in cells of hematopoietic lineage. The three genes are in a region of Chromosome 19q13.4 that is immediately centromeric of the killer cell Ig-like receptor genes and are separated from one another by ∼20 to 30 kb, suggesting that they arose by gene duplication from a common ancestor.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 37 (1991), S. 177-184 
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: A critical problem in the storage and delivery of pharmaceutical proteins is their aggregation induced by moisture. A model system has been elaborated and investigated to elucidate the mechanism of this phenomenon. When 10 mg of bovine serum albumin lyophilized from an aqueous solution of pH 7.3 are wetted with just 3 μL of a buffered physiological saline solution and incubated in the solid state at 37°C, the protein progressively loses its solubility in water; e.g., after a 24 h incubation 97% of the protein becomes insoluble. This moisture-induced aggregation of albumin has been discovered to be due to an intermolecular S - S bond formation via the thiol-disulfide interchange reaction. The dependence of the extent of the solid-state aggregation on the amount and mode of addition of moisture and the atmosphere, additives, temperature, and history of the protein powder have been investigated. The moisture-induced solid-state aggregation has also been established and studied for three other lyophilized proteins: ovalbumin, glucose oxidase, and β-lactoglobulin. In all cases, the loss of solubility is caused by thiol-disulfide interchange either alone or in combination with a conformational (noncovalent) process. The aggregation can be minimized by lyophilizing the proteins from acidic aqueous solutions, by adding inorganic salts, by co-lyophilizing the proteins with water-soluble polymers, or by controlling the moisture content at optimal levels.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...