Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of food science 47 (1982), S. 0 
    ISSN: 1750-3841
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Simple equations were developed to predict the values of some characteristic transcendental and Bessel functions, and hence the temperature history in regular solid foods of finite and infinite dimensions under unsteady state conduction with convective heat transfer at the surface. For various combinations of Biot (0.02- 200) and Fourier (〉0.2) numbers, the mean error involved in predicting the unsteady temperature ratio using the developed equations was less than 0.1% as compared to the original models. Equations were presented for temperature at any location as well as the mass average temperature. The characteristic functions were related to the f and j parameters from heating and cooling curves.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 41 (1993), S. 700-706 
    ISSN: 0006-3592
    Keywords: anaerobic digestion ; cheese whey ; UASB reactor ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The anaerobic digestion of cheese whey was studied in a UASB reactor. The profiles of the reactor, i.e., the distributions of the substrate concentration and pH under different operating conditions were developed. From the concentrations of substrates measured at various levels above the bottom of the reactor, two reaction stages, namely acidogenesis and methanogenesis, were distinguished. The instability caused by high influent concentration was interpreted as the accumulation of VFAs in the acidogenic stage beyond the assimilative capacity of the methanogenic stage. A range of stable operating conditions was predicted from the results of the profile measurements. The optimal influent concentration was found to be between 25 and 30 g COD/L at an HRT of 5 days for system stability. Other options fro stability control were discussed. © 1993 John Wiley & Sons, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 27 (1985), S. 266-272 
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The technical feasibility of adopting the fixed-film reactor concept for biogas production from screened dairy manure was investigated. The methane production capability of laboratory-scale 4-L anaerobic reactors (conventional and fixed-film) receiving screened dairy manure and operated at 35°C was compared. Dairy manure filtrate with 4.4% total solids (TS) and 3.4% volatile solids (VS) (average value) was prepared from 1:1 manure-water slurry. The feed material was added intermittently at loading rates ranging from 2.34 to 25 and 2.25 to 785 g VS/L d, respectively, for the conventional and fixed-film reactors. Maximum methane production rate (L CH4/L d) for the conventional reactor was 0.63 L CH4/L d achieved at a 6-day hydraulic retention time (HRT). For the fixed-film reactor the maximum production rate was 3.53 L CH4/L d when operated at a loading rate of 262 g VS/L d (3 h HRT). The fixed-film reactor was capable of sustaining a loading of 785 g VS/L d (1 h HRT). The fixed-film reactor performed much better than the conventional reactors. These results indicate that a large reduction of required reactor volume is possible through application of a fixed-film concept combined with a liquid-solid separation pretreatment of dairy manure.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 33 (1989), S. 623-630 
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: The mixed-culture anaerobic conversion of lactose to organic acids in a bench-scale continuous-flow stirredtank fermentor is considered. The major acidogenic end-product distribution with respect to the dilution rate are presented. A Monod chemostat model is employed to describe a microbial growth, and the influence on pH of the estimated model parameters is discussed.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 34 (1989), S. 1235-1250 
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Acidogenic fermentation of lactose was carried out in a continuous stirred reactor with a mixed anaerobic culture. From the variation of the reactor products with pH and dilution rate two possible carbon flow schemes were proposed for the reaction. In both schemes the carbon flow from pyruvate to butyrate and lactate was assumed to occur in parallel. A change in gas composition and in product concentrations at dilution rates between 0.1 and 0.15 h-1 for pH levels between 4.5 and 6.0 was ascribed to a shift in microbial population. To clarify the mechanism radiotracer tests were made using [U-14C]-butyrate, [2-14C]-propionate and [U-14C]-lactate to determine the path of carbon flow during acidogenesis of lactose using a mixed culture. At a dilution rate between 0.1 and 0.15 h-1 and pH from 4.5 to 6.0 a rise in the lactate concentration in the product was shown to be due to a microbial population shift which disabled the conversion of lactate to other intermediary metabolites. It was also found that the flow of carbon from pyruvate to butyrate and lactate occurred by parallel pathways. Also, in the presence of hydrogen reducing methanogens, lactate was almost completely converted to acetate and not propionate. Butyrate was found to be converted to acetate at a slow rate as long as hydrogen reducing methanogens were present. The role played by propionibacteria in this lactose acidogenic eocosystem was minor. From the carbon flow model it can be concluded that lactate is the most suitable marker for optimizing an acidogenic reactor in a two-phase biomethanation process.
    Additional Material: 16 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 36 (1990), S. 642-646 
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: In previous studies on the acidogenic phase of anaerobic fermentation of lactose, a pathway for the reaction and a rate equation have been proposed. The question then remained as to the effect of the protein in whole whey on the mechanism and on the overall organic substrate conversion. In this study, it was found that as much as 70% of the protein was broken down in the acidogenic reactor. Radiotracer tests showed that the inclusion of protein had no effect on the reaction pathway for lactose degradation. Thus, the whole sweet cheese whey can be fermented as efficiently as whey from which the protein has been removed.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 30 (1987), S. 88-95 
    ISSN: 0006-3592
    Keywords: Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Cheese whey is the main component of waste streams from cheese manufacturing plants. Whey is a high biochemical oxygen demand (BOD) effluent that must be reduced before the streams are sent to the sewer. It is proposed in this article that the production of methane by anaerobic fermentation would be the best use of this stream, especially for small plants. Single-stage fermentation of lactose, the main component of whey, results in a very low pH and a stalled process. Two-phase fermentation will eliminate this problem. The acidogenic stage of fermentation has been studied at pH of between 4 and 6.5. The nature of the main products of the reaction have been found to be pH dependent. Below a pH of 4.5 a gas (CO2 and H2) is produced along with ethanol, acetate, and butyrate. Above a pH of 4.5 no gas was produced, and the liquid products included less ethanol and butyrate and more acetate. A separate study on the conditions for gas formation showed that if the pH dropped for a short time below 4.5 gases were formed at all subsequent pH. This would indicate a change in population distribution due to the period at a low pH. By assuming that the desired products from the acidogenic stage were butyrate, acetate, and no gases, the optimum pH range was found to be between 6.0 and 6.5.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 40 (1992), S. 1388-1394 
    ISSN: 0006-3592
    Keywords: chromatography ; cation exchanger ; immunoglobulin ; egg yolk ; separation ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: An automated liquid chromatography system was developed to carry out the separation of an egg yolk immunoglobulin (IgY) using cation exchange media. Industrially separated egg yolk was diluted 10 times with distilled water, the pH adjusted to 5.5, and the water-soluble protein fraction separated from lipoproteins by sedimentation. The supernatant was filtered and then applied to a column packed with a cation exchanger within an automated liquid chromatography system. Different operating conditions were investigated using phosphate buffer in order to assess the effect on recovery and purity. Fractions as pure as 80% could be collected and a recovery of the chromatography step of about 65% was obtained for a purity of 60% using either a linear or step gradient. The overall recovery for the process was 34% if one-step dilution/extraction is used for lipoprotein separation by sedimentation, and 51% if two-step dillution/extraction is used. Further improvement of the yield to about 60% is possible using centrifugation for lipoprotein separation. The automated system confers many advantages, the key elements being the time savings and accurate control of the process. © 1992 John Wiley & Sons, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...