Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Mannitol, a sugar alcohol that may serve as a compatible solute to cope with salt stress, is synthesized via the action of a mannose-6-phosphate reductase (M6PR) in celery (Apium graveolens L). In contrast to previous approaches that have used a bacterial gene to engineer mannitol biosynthesis in plants and other organisms, Arabidopsis thaliana, a non-mannitol producer, was transformed with the celery leaf M6PR gene under control of the CaMV 35S promotor. In all independent Arabidopsis M6PR transformants, mannitol accumulated throughout the plants in amounts ranging from 0·5 to 6 µmol g−1 fresh weight. A novel compound, not found in either celery or Arabidopsis, 1-O-β-d-glucopyranosyl-d-mannitol, also accumulated in vegetative tissues of mature plants in amounts up to 4 µmol g−1 fresh weight, but not in flowers and seeds. In the absence of NaCl, all transformants were phenotypically the same as the wild type; however, in the presence of NaCl, mature transgenic plants showed a high level of salt tolerance, i.e. growing, completing normal development, flowering, and producing seeds in soil irrigated with 300 mm NaCl in the nutrient solution. These results demonstrate a major role in developing salt-tolerant plants by means of introducing mannitol biosynthesis using M6PR.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Plant, cell & environment 15 (1992), S. 0 
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Turgor maintenance, solute content and recovery from water stress were examined in the drought-tolerant shrub Artemisia tridentata. Predawn water potentials of shrubs receiving supplemental water remained above −2 MPa throughout summer, while predawn water potentials of untreated shrubs decreased to −5 MPa. Osmotic potentials decreased in conjunction with water potentials maintaining turgor pressures above 0 MPa. The decreases in osmotic potentials were not the result of osmotic adjustment (i.e. solute accumulation). Leaf solute contents decreased during drought, but leaf water volumes decreased more than 75% from spring to summer, thereby passively concentrating solutes within the leaves. The maintenance of positive turgor pressures despite decreases in leaf water volumes is consistent with other studies of species with elastic cell walls. Inorganic ion, organic acid, and carbohydrate contents of leaves declined during drought. The only solutes accumulating in leaves of A. tridentata with water stress were proline and a cyclitol, both considered compatible solutes. Total and osmotic potentials recovered rapidly following rewatering of shrubs; solute contents did not change except for a decrease in proline. Maintaining turgor through the passive concentration of solutes may be advantageous compared to synthesis of new solutes for osmotic adjustment in arid environments.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Physiologia plantarum 69 (1987), S. 0 
    ISSN: 1399-3054
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Utilization of sucrose and mannitol, the major forms of translocatable assimilate in celery (Apium graveolens L. cv. Giant Pascal), was investigated in intact plants, excised leaves and leaf discs by estimating the soluble carbohydrate pools, starch levels and oxidation of [14C]-sucrose or mannitol in the light and after extended dark treatments. In detached mature fully-expanded leaves, mannitol pools remained constant, while sucrose decreased during a 48 h dark treatment. In attached leaves on plants trimmed to a single compound leaf, however, mannitol levels decreased after a dark treatment. In leaf discs floated on bathing solutions containing [14C]-sucrose or [14C]-mannitol, oxidation of mannitol was restricted to young leaf tissues, whereas sucrose was metabolized to CO2 regardless of leaf age. Uptake of labelled mannitol, however, was greater than that of sucrose in the light in leaves of every age. Although both mannitol and sucrose are translocated out of leaf tissues, leaf age differences indicate that, unlike sucrose, mannitol utilization is restricted to active sink tissues. The results suggest different roles for mannitol and sucrose with mannitol representing a more rigorously sequestered transport carbohydrate.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...