Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Plant Physiology and Plant Molecular Biology 45 (1994), S. 633-662 
    ISSN: 1040-2519
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1365-2486
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Notes: The C4 grass Zea mays (maize or corn) is the third most important food crop globally in terms of production and demand is predicted to increase 45% from 1997 to 2020. However, the effects of rising [CO2] upon C4 plants, and Z. mays specifically, are not sufficiently understood to allow accurate predictions of future crop production. A rainfed, field experiment utilizing free-air concentration enrichment (FACE) technology in the primary area of global corn production (US Corn Belt) was undertaken to determine the effects of elevated [CO2] on corn. FACE technology allows experimental treatments to be imposed upon a complete soil–plant–atmosphere continuum with none of the effects of experimental enclosures on plant microclimate. Crop performance was compared at ambient [CO2] (354 μ mol mol−1) and the elevated [CO2] (549 μmol mol−1) predicted for 2050. Previous laboratory studies suggest that under favorable growing conditions C4 photosynthesis is not typically enhanced by elevated [CO2]. However, stomatal conductance and transpiration are decreased, which can indirectly increase photosynthesis in dry climates. Given the deep soils and relatively high rainfall of the US Corn Belt, it was predicted that photosynthesis would not be enhanced by elevated [CO2]. The diurnal course of gas exchange of upper canopy leaves was measured in situ across the growing season of 2002. Contrary to the prediction, growth at elevated [CO2] significantly increased leaf photosynthetic CO2 uptake rate (A) by up to 41%, and 10% on average. Greater A was associated with greater intercellular [CO2], lower stomatal conductance and lower transpiration. Summer rainfall during 2002 was very close to the 50-year average for this site, indicating that the year was not atypical or a drought year. The results call for a reassessment of the established view that C4 photosynthesis is insensitive to elevated [CO2] under favorable growing conditions and that the production potential of corn in the US Corn Belt will not be affected by the global rise in [CO2].
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Plant, cell & environment 26 (2003), S. 0 
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Surface ozone concentrations ([O3]) during the growing season in much of the northern temperate zone reach mean peak daily concentrations of 60 p.p.b. Concentrations are predicted to continue to rise over much of the globe during the next 50 years. Although these low levels of ozone may not induce visible symptoms on most vegetation, they can result in substantial losses of production and reproductive output. Establishing the vulnerability of vegetation to rising background ozone is complicated by marked differences in findings between individual studies. Ozone effects are influenced by exposure dynamics, nutrient and moisture conditions, and the species and cultivars that are investigated. Meta-analytic techniques provide an objective means to quantitatively summarize treatment responses. Soybean has been the subject of many studies of ozone effects. It is both the most widely planted dicotyledonous crop and a model for other C3 annual plants. Meta-analytic techniques were used to quantitatively summarize the response of soybean to an average, chronic ozone exposure of 70 p.p.b., from 53 peer-reviewed studies. At maturity, the average shoot biomass was decreased 34% and seed yield was 24% lower. Even in studies where [O3] was 〈 60 p.p.b., there was a significant decrease in biomass and seed production. At low [O3], decreased production corresponded to a decrease in leaf photosynthesis, but in higher [O3] the larger loss in production was associated with decreases in both leaf photosynthesis and leaf area. The impact of ozone increased with developmental stage, with little effect on vegetative growth and the greatest effect evident at completion of seed filling. Other stress treatments, including UV-B and drought, did not alter the ozone response. Elevated carbon dioxide significantly decreased ozone-induced losses, which may be explained by a significant decrease in stomatal conductance.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Photosynthesis is commonly stimulated in grasslands with experimental increases in atmospheric CO2 concentration ([CO2]), a physiological response that could significantly alter the future carbon cycle if it persists in the long term. Yet an acclimation of photosynthetic capacity suggested by theoretical models and short-term experiments could completely remove this effect of CO2. Perennial ryegrass (Lolium perenne L. cv. Bastion) was grown under an elevated [CO2] of 600 µmol mol−1 for 10 years using Free Air CO2Enrichment (FACE), with two contrasting nitrogen levels and abrupt changes in the source : sink ratio following periodic harvests. More than 3000 measurements characterized the response of leaf photosynthesis and stomatal conductance to elevated [CO2] across each growing season for the duration of the experiment. Over the 10 years as a whole, growth at elevated [CO2] resulted in a 43% higher rate of light-saturated leaf photosynthesis and a 36% increase in daily integral of leaf CO2 uptake. Photosynthetic stimulation was maintained despite a 30% decrease in stomatal conductance and significant decreases in both the apparent, maximum carboxylation velocity (Vc,max) and the maximum rate of electron transport (Jmax). Immediately prior to the periodic (every 4–8 weeks) cuts of the L. perenne stands, Vc,max and Jmax, were significantly lower in elevated than in ambient [CO2] in the low-nitrogen treatment. This difference was smaller after the cut, suggesting a dependence upon the balance between the sources and sinks for carbon. In contrast with theoretical expectations and the results of shorter duration experiments, the present results provide no significant change in photosynthetic stimulation across a 10-year period, nor greater acclimation in Vc,max and Jmax in the later years in either nitrogen treatment.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Spring wheat was grown from emergence to grain maturity in two partial pressures of CO2 (pCO2): ambient air of nominally 37 Pa and air enriched with CO2 to 55 Pa using a free-air CO2 enrichment (FACE) apparatus. This experiment was the first of its kind to be conducted within a cereal field without the modifications or disturbance of microclimate and rooting environment that accompanied previous studies. It provided a unique opportunity to examine the hypothesis that continuous exposure of wheat to elevated pCO2 will lead to acclimatory loss of photosynthetic capacity. The diurnal courses of photosynthesis and conductance for upper canopy leaves were followed throughout the development of the crop and compared to model-predicted rates of photosynthesis. The seasonal average of midday photosynthesis rates was 28% greater in plants exposed to elevated pCO2 than in contols and the seasonal average of the daily integrals of photosynthesis was 21% greater in elevated pCO2 than in ambient air. The mean conductance at midday was reduced by 36%. The observed enhancement of photosynthesis in elevated pCO2 agreed closely with that predicted from a mechanistic biochemical model that assumed no acclimation of photosynthetic capacity. Measured values fell below predicted only in the flag leaves in the mid afternoon before the onset of grain-filling and over the whole diurnal course at the end of grain-filling. The loss of enhancement at this final stage was attributed to the earlier senescence of flag leaves in elevated pCO2. In contrast to some controlled-environment and field-enclosure studies, this field-scale study of wheat using free-air CO2 enrichment found little evidence of acclimatory loss of photosynthetic capacity with growth in elevated pCO2 and a significant and substantial increase in leaf photosynthesis throughout the life of the crop.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Over a large part of the photoperiod, light energy absorbed by upper canopy leaves saturates photosynthesis and exceeds the energetic requirements for light-saturated linear electron flow through photosystem II (JPSII), so that photoinhibition results. From a theoretical consideration of the response of light-saturated photosynthesis to elevated atmospheric CO2 partial pressure (pCO2) it may be predicted that, where light-saturated photosynthesis is Rubisco-limited, an increase in pCO2 will stimulate JPSII. Therefore, the proportion of absorbed quanta dissipated photochemically will increase and the potential for photoinhibition of photosynthesis will decrease. This was tested by measuring modulated chlorophyll a fluorescence from Quercus myrtifolia Willd. growing in the field in open-top chambers, at either current ambient or elevated (ambient + 35 Pa) pCO2 on Merritt Island, Florida, USA. During spring and summer, light-saturated photosynthesis at current ambient pCO2 was Rubisco-limited. Consistent with theoretical prediction, JPSII was increased and photoinhibition decreased by elevated pCO2 in spring. In the summer, when growth had largely ceased, an acclimatory decrease in the maximum Ribulose 1,5 bisphosphate saturated carboxylation capacity (Vc max) removed the stimulation of JPSII seen in the spring, and photoinhibition was increased in elevated pCO2. It is concluded that, for Q. myrtifolia growing in the field, the effects of elevated pCO2 on JPSII and photoinhibition will reflect seasonal differences in photosynthetic acclimation to elevated pCO2 in a predictable manner.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Plant, cell & environment 20 (1997), S. 0 
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: This study investigated the interacting effects of carbon dioxide and ozone concentrations on the growth and yield of spring whet (Triticum aestivum L. cv. Wembley). Plants were exposed from time of sowing to harvest to reciprocal combinations of two carbon dioxide and two ozone treatments: [CO2] at 350 or 700 μmol mol−1, and [O3] at 〈 5 or 60 nmol mol−1. Records of leaf emergence, leaf duration and tillering were taken throughout leaf development. At harvest, biomass, yield and partitioning were analysed. Our data showed that elevated [CO2] fully protected against the detrimental effect of elevated [O3] on biomass, but not yield.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Plant, cell & environment 18 (1995), S. 0 
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Although C4 plants are considered to have higher conversion efficiency and productivity than C3, plants, this advantage may not be realized under sub-optimal conditions. Two perennial C4 rhizomatous grasses of cool temperate origin, Miscanthus × giganteus and Spartina cyno-suroides, have been suggested as potential fuel crops for north-western Europe. The conversion efficiencies of these species were examined for 2 years in fertilized, irrigated, replicated plots in south-eastern England. In the second year, the energy conversion efficiencies for shoot and total biomass production were 0.040 and 0.051, respectively, for S. cynosuroides, with significantly higher values of 0.060 and 0.078, respectively, for M. × giganteus. The M. × giganteus crop attained shoot productivity of 2.87 kg m−2 between April and September, exceeding the highest values typically obtained with intensively managed C3, crops. Canopy development was early, and high interception and conversion efficiencies were maintained over most of the growing season. This study provides the evidence that the superior potential light conversion efficiencies associated with C4 photosynthesis can be realized under cool temperate conditions and that such climatic conditions do not Inherently impair the C4 process.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Abstract. The effect of growth temperatures on quantum yield (φ) was examined for leaves at different stages of development within the immature canopies of two crops of field grown maize (Zea mays cv. LG11) sown on 3 May and 20 June 1990. During the period of 23 to 49d after sowing, the crop sown on the 3 May experienced temperatures below 10°C on 19 occasions compared with only two for the crop sown on 20 June. A period of severe chilling at the end of May and the beginning of June was associated with a marked reduction in φ for all leaves in the early-sown crop. This chill-induced depression in φ was greater in recently emerged than more mature leaves in the canopy and was found to be accompanied by modifications in the polypeptide profiles of thylakoids isolated from the leaves. During the chilling period, decreases in some polypeptides, notably in the range of 41–42 and 20kDa apparent molecular size, and increases of polypeptides of c. 15–16kDa were observed compared with leaves developing at warmer temperatures in July. The efficiency of converting intercepted radiation into dry matter (conversion efficiency) was 42% lower in the early- than late-sown crop, but no significant relationship between conversion efficiency and quantum yield was found in either treatment.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: A lower than theoretically expected increase in leaf photosynthesis with long-term elevation of carbon dioxide concentration ([CO2]) is often attributed to limitations in the capacity of the plant to utilize the additional photosynthate, possibly resulting from restrictions in rooting volume, nitrogen supply or genetic constraints. Field-grown, nitrogen-fixing soybean with indeterminate flowering might therefore be expected to escape these limitations. Soybean was grown from emergence to grain maturity in ambient air (372 µmol mol−1[CO2]) and in air enriched with CO2 (552 µmol mol−1[CO2]) using Free-Air CO2 Enrichment (FACE) technology. The diurnal courses of leaf CO2 uptake (A) and stomatal conductance (gs) for upper canopy leaves were followed throughout development from the appearance of the first true leaf to the completion of seed filling. Across the growing season the daily integrals of leaf photosynthetic CO2 uptake (A′) increased by 24.6% in elevated [CO2] and the average mid-day gs decreased by 21.9%. The increase in A′ was about half the 44.5% theoretical maximum increase calculated from Rubisco kinetics. There was no evidence that the stimulation of A was affected by time of day, as expected if elevated [CO2] led to a large accumulation of leaf carbohydrates towards the end of the photoperiod. In general, the proportion of assimilated carbon that accumulated in the leaf as non-structural carbohydrate over the photoperiod was small (〈 10%) and independent of [CO2] treatment. By contrast to A′, daily integrals of PSII electron transport measured by modulated chlorophyll fluorescence were not significantly increased by elevated [CO2]. This indicates that A at elevated [CO2] in these field conditions was predominantly ribulose-1,5-bisphosphate (RubP) limited rather than Rubisco limited. There was no evidence of any loss of stimulation toward the end of the growing season; the largest stimulation of A′ occurred during late seed filling. The stimulation of photosynthesis was, however, transiently lost for a brief period just before seed fill. At this point, daytime accumulation of foliar carbohydrates was maximal, and the hexose:sucrose ratio in plants grown at elevated [CO2] was significantly larger than that in plants grown at current [CO2]. The results show that even for a crop lacking the constraints that have been considered to limit the responses of C3 plants to rising [CO2] in the long term, the actual increase in A over the growing season is considerably less than the increase predicted from theory.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...