Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 261 (1976), S. 525-525 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] ATTENTION has been called to the unusual number and proportion of Type III-RS (reverse slope) solar radio bursts observed on August 12, 1975 (ref. 1). We believe a simple explanation of these observations is suggested by comparison with Ha filtergram movies obtained at Big Bear Solar Observatory on ...
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Solar physics 115 (1988), S. 251-268 
    ISSN: 1573-093X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract Sunspots block the flow of energy to the solar surface. The blocked energy heats the volume beneath the spot, producing a pressure excess which drives an outflow of mass. Linear numerical models of the mass and energy flow around spots were constructed to estimate the predictions of this physical picture against the observed properties of sunspot bright rings and moat flows. The width of the bright ring and moat are predicted to be proportional to the depth of the spot penumbra, in conflict with the observed proportionally of the moat width to the spot diameter. Postulating that spot depths are proportional to spot diameters would bury the moat flow too deeply to be observed, because the radial velocity at the surface is found to be inversely proportional to the depth of the spot penumbra. The radial velocity at the surface is of order a few hundred meters per second after 1 day, in agreement with the observed excess of moat velocities over supergranule velocities.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Solar physics 113 (1982), S. 285-288 
    ISSN: 1573-093X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract It is well known that flares cause changes in the azimuthal direction of chromospheric magnetic field lines (e.g. Zirin, 1983). It is less well known that flares also cause changes in the inclination angle of chromospheric magnetic field lines (Bruzek, 1975). Inclination angle changes are notable in that horizontal field lines take the form of fibrils, while vertical field lines take the form of plages (Marsh, 1976). This study examines a complete sample of large flares to determine when the field inclination changes during the flare. The Hard X-ray Burst Spectrometer Event Listing (Dennis et. al, 1985) was searched for events with total counts 〉 105 and start times 〉 14 UT but 〈24 UT. Big Bear Solar Observatory Hα films were examined to identify which X-ray events show large horizontal ribbon motion over regions of fibrils. Of the 7 events found, 6 contain areas of the chromosphere that have the magnetic field direction turned from horizontal to vertical. The change in field direction at a given location occurs after the arrival of the ribbon, often 103 to 104 s after the flare start. No change in the chromosphere is seen before the ribbon arrival. These observations show that field lines involved in the flare do not spend more than a few minutes in “open” configurations before reconnecting to new partners, independent of the flare duration. The transit time of an Alfvén wave down a magnetic field line is only ≈102 s. Flare models that postulate field line disconnection or opening which lasts longer than the Alfvén time are ruled out, since the chromospheric footpoints are observed not to change before the ribbon arrival (field line energization). The captive filament eruption model (Moore and LaBonte, 1980) also implies field line alterations lasting the duration of the flare, and is thus ruled out. Successful flare models should have the behavior of a brushfire, with the free energy in one bush (field line) released only after the burning (flare energy deposition) in its neighbor raises its own temperature over the ignition point (inductively raises the free energy density over the flare threshold). The flare continues until the inductive energy density increase is small enough to be contained by the normal nonflare processes. A full description of the observations and their implications will appear in a future paper. This work is supported by NASA Grant NSG 7536.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Solar physics 135 (1991), S. 163-177 
    ISSN: 1573-093X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract The Mees CCD (MCCD) instrument is an imaging spectroscopy device which uses the 25 cm coronagraph telescope and the 3.0 m Coudé spectrograph at Mees Solar Observatory (MSO) on Haleakala, Maui. The instrument works with resolving power up to R ≈ 200 000 with significant throughput from λ3934 Å (Caii K) to λ ≈ 10 000 Å. A fast guiding active mirror stabilizes the image during observations. A rapidly writing magnetic tape storage system allows observations to be recorded at 256 kbytes s−1. Currently, the MCCD is used for imaging spectroscopy of solar flares at λ6563 Å (Hα), and velocity measurements of umbral oscillations; future plans include emission line studies of active region coronae, and photospheric studies of solar oscillations.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1573-093X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract The Global Oscillation Network Group (GONG) Project will place a network of instruments around the world to observe solar oscillations as continuously as possible for three years. The Project has now chosen the six network sites based on analysis of survey data from fifteen sites around the world. The chosen sites are: Big Bear Solar Observatory, California; Mauna Loa Solar Observatory, Hawaii; Learmonth Solar Observatory, Australia; Udaipur Solar Observatory, India; Observatorio del Teide, Tenerife; and Cerro Tololo Interamerican Observatory, Chile. Total solar intensity at each site yields information on local cloud cover, extinction coefficient, and transparency fluctuations. In addition, the performance of 192 reasonable components analysis. An accompanying paper describes the analysis methods in detail; here we present the results of both the network and individual site analyses. The selected network has a duty cycle of 93.3%, in good agreement with numerical simulations. The power spectrum of the network observing window shows a first diurnal sidelobe height of 3 × 10−4 with respect to the central component, an improvement of a factor of 1300 over a single site. The background level of the network spectrum is lower by a factor of 50 compared to a single-site spectrum.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Solar physics 61 (1979), S. 283-296 
    ISSN: 1573-093X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract Macrospicules have been observed in Hα and He i D3, on the disk and above the limb. In 1975, a rate of 1400 (A ⊙day)−1 is inferred, and the ratio of equatorial to polar rates ≲ 2. D3 intensities are a few × 10−3 of the disk center, and do not decrease in coronal holes. The ratio of Hα to D3 intensities is ≈ 10. The integral number of macrospicules with D3 intensity ≥I 0 is proportional to I 0 −1.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Solar physics 80 (1982), S. 15-19 
    ISSN: 1573-093X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract The Ca ii K line emission from the quiet Sun network does not vary with the 11-year cycle (White and Livinston, 1981). We confirm this result from direct magnetic measurements. This effect is not simply explained by present empirical models of the evolution of surface magnetic fields.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Solar physics 80 (1982), S. 373-378 
    ISSN: 1573-093X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract A numerical test is made to determine if the high-latitude torsional wave is generated from the low-latitude torsional pattern as a result of our reduction procedures. The results indicate that the high-latitude motions are not an artifact of the analysis, but are true solar features. We demonstrate also that the one-wave-per-hemisphere torsional oscillation does not result from the reduction procedure. These results place the observations in conflict with the predictions of α - (ω) models of the solar cycle.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Springer
    Solar physics 80 (1982), S. 361-372 
    ISSN: 1573-093X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract The ‘ears’ velocity pattern described in Paper I (Howard et al., 1980) had no physical explanation. A reanalysis shows that the large scale solar velocity patterns are better described by a nonmonotonic limbshift and a meridional flow. The results of the new analysis imply that the study of solar velocity pattern at the level of a few ms−1 required that magnetic regions be treated separately from nonmagnetic regions.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1573-093X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract The Imaging Vector Magnetograph (`IVM') at Mees Solar Observatory, Haleakalā, Maui, Hawai`i, is designed to measure the magnetic field vector over an entire solar active region on the Sun. The first step in that process is to correct the raw data for all known systematic effects introduced by the instrument and Earth's atmosphere. We define a functional model of the atmosphere/instrument system and measure the corrections for the degradation introduced by each component of the model. We demonstrate the feasibility of this method and assess the accuracy of the IVM spectra with a direct comparison of the resulting Stokes spectra to a well-described spectropolarimeter.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...