Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-0983
    Keywords: Yeast ; Mitochondria ; Aminoacyl-tRNA synthetase ; RNA splicing
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The mitochondrial leucyl-tRNA synthetase (mLRS) of Saccharomyces cerevisiae is involved in both mitochondrial protein synthesis and pre-mRNA splicing. We have created mutations in the regions HIGH, GWD and KMSKS, which are involved in ATP-, amino acid-and tRNA-binding respectively, and which have been conserved in the evolution of group I tRNA synthetases. The mutants GRD and NMSKS have no discernible phenotype. The mutants AWD and ARD act as null alleles and lead to the production of 100% cytoplasmic petites. The mutants HIGN, NIGH and KMSNS are unable to grown on glycerol even in the presence of an intronless mitochondrial genome and accumulate petites to a greater extent than the wild-type but less than 40%. Experiments with an imported bI4 maturase indicate that the lesion in these mutations primarily affects the synthetase and not the splicing functions.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1617-4623
    Keywords: Yeast ; Mitochondria ; pre-mRNA splicing ; tRNA synthetase gene ; Incipient evolution
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary We studied the NAM2 genes of Saccharomyces douglasii and Saccharomyces cerevisiae, and showed that they are interchangeable for all the known functions of these genes, both mitochondrial protein synthesis and mitochondrial mRNA splicing. This confirms the prediction that the S. douglasii NAM2D gene encodes the mitochondrial leucyl tRNA synthetase (EC 6.1.1.4). The observation that these enzymes are interchangeable for their mRNA splicing functions, even though there are significant differences in the intron/exon structure of their mitochondrial genome, suggests that they may have a general role in yeast mitochondrial RNA splicing. A short open reading frame (ORF) precedes the synthetase-encoding ORF, and we showed that at least in S. cerevisiae this is not essential for the expression of the gene; however, it may be involved in a more subtle type of regulation. Sequence comparisons of S. douglasii and S. cerevisiae revealed a particularly interesting situation from the evolutionary point of view. It appears that the two yeasts have diverged relatively recently: there is remarkable nucleotide sequence conservation, with no deletions or insertions, but numerous (albeit non-saturating) silent substitutions resulting from transitions. This applies not only to the NAM2 coding regions, but also to two other ORFs flanking the NAM2 ORF. The regions between the ORFs (believed to be intergenic regions) are much less conserved, with several deletions and insertions. Thus S. douglasii and S. cerevisiae provide an ideal system for the study of molecular evolution, being two yeasts “caught in the act” of speciation.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Molecular genetics and genomics 224 (1990), S. 209-221 
    ISSN: 1617-4623
    Keywords: Aminoacyl-tRNA synthetase ; RNA splicing ; Group I introns ; RNA maturase ; Yeast
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary The Saccharomyces cerevisiae nuclear gene NAM2 codes for mitochondrial leucyl-tRNA synthetase (mLRS). Herbert et al. (1988, EMBO J 7:473–483) proposed that this protein is involved in mitochondrial RNA splicing. Here we present the construction and analyses of nine mutations obtained by creating two-codon insertions within the NAM2 gene. Three of these prevent respiration while maintaining the mitochondrial genome. These three mutants: (1) display in vitro a mLRS activity ranging from 0%–50% that of the wild type: (2) allow in vivo the synthesis of several mitochondrially encoded proteins; (3) prevent the synthesis of the COXII protein but not of its mRNA; (4) abolish the splicing of the group I introns bI4 and aI4; and (5) affect significantly the excision of the group I introns bI2, bI3 and aI3. Importation of the bI4 maturase from the cytoplasm into mitochondria in a nam2 − mutant strain does not restore the excision of the introns bI4 and aI4 implying that the splicing deficiency does not result from the absence of the bI4 maturase. We conclude that the mLRS is a splicing factor essential for the excision of the group I introns bI4 and aI4 and probably important for the excision of other group I introns.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 0749-503X
    Keywords: Shuttle vectors ; yeast replication origin ; mitotic stability ; pUC19 plasmid ; Life and Medical Sciences ; Genetics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology
    Notes: We describe a set of replicative, integrative and single-stranded shuttle vectors constructed from the pUC19 plasmid that we use routinely in our experiments. They bear a yeast selectable marker: URA3, TRP1 or LEU2. Replicative vectors carrying different yeast replication origins have been constructed in order to have plasmids based on the same construction with a high or low copy number per cell and with different mitotic stabilities. All the vectors are small in size, provide a high yield in Escherichia coli and efficiently transform Saccharomyces cerevisiae. These plasmids have many of the unique sites of the pUC19 multicloning region and many of them allow for the screening of plasmids with an insert by alpha-complementation. The nucleotide sequence of each of them is completely known.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...