Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part A: Polymer Chemistry 24 (1986), S. 1463-1486 
    ISSN: 0887-624X
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: We are investigating an unusual reaction that occurs when methyl methacrylate (MMA) is kept in contact with concentrated nitric acid1 (65% HNO3, sp. gr. 1.41). Polymer of high molecular weight is formed, showing about one unit of methacrylic acid (MAA) per unit of MMA, when equilibrium is reached. The reaction depends on the temperature, the molar ratio MMA:HNO3, and the reaction time. Although we also found polymer at temperatures in the range 50-70°C,2 in this paper we only report the results when the temperature was kept between 25 and 40°C. Methacrylic acid (MAA) was found to homopolymerize under those mild conditions; its behavior was investigated. Although we also observed that polymer is formed with sulfuric acid (96%) and that acrylic acid polymerizes with both nitric and sulfuric acid at 20-30°C, we are limiting this article to the observed polymerizing action of nitric acid on methyl methacrylate and on methacrylic acid. Work proceeds on this matter in this laboratory.
    Additional Material: 23 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Applied Polymer Science 58 (1995), S. 2077-2094 
    ISSN: 0021-8995
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Commercial ethylene-octene linear low-density polyethylene (LLDPE) polymers were reactively extruded with low levels of 2,5-dimethyl-2,5 di(t-butylperoxy)hexane to modify their molecular structure and processing properties. Peroxide levels were kept low to avoid crosslinking. This article examines the effects of reactive extrusion in a corotating intermeshing extruder. Gel content analyses and examination of extruded thin tapes indicated that the products were gel-free, but line-broadening in high-resolution 13C-NMR spectra suggested that some crosslinking did occur. Molecular weight distributions were broadened toward higher molecular weights, as expected. SEC estimates of long-chain branching in reacted polyethylenes were consistent with the results of 13C-NMR analyses. Under our extrusion conditions, the products contained about one long branch per number-average molecule. This result and data on changes in carbon-carbon unsaturation indicate that the major chain extension mechanism is an end-linking reaction between terminal vinyls or allylic radicals formed at chain ends and secondary radicals. Both types are produced by hydrogen abstraction on the LLDPE. All long branches originated at tertiary branch points. Changes in thermal behavior, as measured by DSC analyses, paralleled those observed by temperature-rising elution fractionation (TREF). SEC molecular weight measurements and long-branch determinations by SEC and 13C-NMR can be used to quantify the effects of peroxide treatment on the molecular structure of polyethylenes. DSC and TREF techniques, however, appear to be more sensitive than are SEC or NMR. Relatively minor variations in the degree of mixing and temperature control during reactive extrusion have noticeable effects on the molecular structures of the peroxide-treated LLDPEs. © 1995 John Wiley & Sons, Inc.
    Additional Material: 19 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Applied Polymer Science 58 (1995), S. 2433-2449 
    ISSN: 0021-8995
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Commercial ethylene-octene linear low-density polyethylenes (LLDPEs) were reactively extruded with low levels of a peroxide [2,5-dimethyl-2,5-di(t-butylperoxy)hexane] to modify polymer molecular structure and processing properties. Peroxide levels were kept low to avoid crosslinking. This article reports the effects of this reactive extrusion on viscoelastic properties. Rheological properties are more sensitive than are molecular structure characteristics to the changes produced by reactions of very low peroxide concentrations. Complex viscosity increases are seen, especially at low frequencies. Shear-thining behavior is also accentuated. The crossover between G′ and G″ moves to lower frequencies. A modified Cole-Cole presentation of these data shows that the elastic component is more predominant for extrusion-reacted materials. Peroxide-modified materials all have higher Bagley end correction values than those of barefoot resins. The former exhibit lower power indices (more shear thinning). All these properties indicate more long-chain branching and higher melt elasticity. However, die swell decreased as a function of peroxide concentration. Peroxide treatment results in an enhancement of elongational viscosity, both under isothermal and cooling conditions, along with a decrease in drawdown ability. The rheological changes parallel those reported earlier in molecular characteristics but are more sensitive and suitable to evaluate the effects of reactive processing. The effectiveness of the reactive extrusion process for improving processability of LLDPEs depends critically on the extrusion conditions. © 1995 John Wiley & Sons, Inc.
    Additional Material: 24 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Applied Polymer Science 59 (1996), S. 1213-1221 
    ISSN: 0021-8995
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: The effects of reactive extrusion with peroxide have been compared for two linear lowdensity polyethylenes (LLDPEs). Resin C is a butene copolymer, while Resin B is an octene-ethylene copolymer. Both have similar molecular weight distributions, but Resin B is significantly richer in terminal vinyl groups. Under the same reactive extrusion conditions, Resin B is much more reactive. Resin C is easier to process in this system, producing products clean of microgel. Concurrently, however, a given peroxide level produces less molecular weight enhancement and long-branch formation in Resin C. Reactive extrusion with peroxide is suitable to effect improvements in the processability of LLDPEs for film applications, provided that the choice of peroxide and the process details are tailored to the characteristics of the particular LLDPE. © 1996 John Wiley & Sons, Inc.
    Additional Material: 14 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Journal of Applied Polymer Science 59 (1996), S. 1775-1785 
    ISSN: 0021-8995
    Keywords: Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: An ethylene-octene linear low-density polyethylene (LLDPE) was treated with peroxide in a reactive extrusion system. A counterrotating nonintermeshing twin-screw extruder (System 2) was contrasted with a corotating intermeshing twin-screw machine (System 1). In System 2, the peroxide solution was pumped into the melted polymer, while it entered with the polymer pellets in the feed section of System 1. Molecular structure changes and the rheological behavior of peroxide-modified resins are similar in both operations but System 2 is much more effective. Much lower peroxide levels were needed in System 2. However, reactions in this setup were also more difficult to control. The presence of microgel was clearly evident in System 2 products but not in those made in System 1. The results of such reactive extrusion processes depend critically on the method of the peroxide feed and mixing conditions. Reaction conditions that favor optimum economy and peroxide efficiency are those which may compromise product homogeneity. © 1996 John Wiley & Sons, Inc.
    Additional Material: 12 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...