Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Neuropsychologia 32 (1994), S. 1435-1440 
    ISSN: 0028-3932
    Keywords: deafferentation ; motor duration production ; proprioceptive afferent ; timing
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Psychology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 0028-3932
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Psychology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Neuropsychologia 32 (1994), S. 1079-1088 
    ISSN: 0028-3932
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Psychology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 0001-6918
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Psychology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 72 (1988), S. 316-334 
    ISSN: 1432-1106
    Keywords: Cutaneous ; Sensory gating ; Evoked potentials ; Sensory cortex ; VPLc thalamus ; Medial lemniscus
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Modulation of sensory transmission in the lemniscal system was investigated in 2 monkeys trained to perform a simple elbow flexion in response to an auditory cue. Evoked responses to peripheral stimulation were recorded in the medial lemniscus, sensory thalamus (ventral posterior lateral nucleus, caudal division, VPLc) and somatosensory cortex. Simultaneous recordings were made from the cortex and either the medial lemniscus or VPLc. At all recording sites, evoked responses to natural (air puff) or electrical, percutaneous stimulation were depressed prior to and during active movement. The time course of the depression was similar at all three levels; the magnitude of the decrease during movement was most pronounced at the cortical level. Cortical evoked responses to central stimulation of effective sites in either the medial lemniscus or VPLc were decreased during, but not before, the onset of movement. The decrease was less than that seen for peripheral evoked potentials. Passive movement of the forearm significantly decreased all but the lemniscal evoked potential. The results indicate that there is a centrally mediated suppression of somatosensory transmission prior to, and during movement, occurring at the level of the first relay, the dorsal column nuclei. During movement, reafferent signals from the moving arm decrease transmission at the thalamocortical level.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1432-1106
    Keywords: Reference systems ; Reaching movements ; Deafferented human ; Spatial processing ; Human
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract To produce accurate goal-directed arm movements, subjects must determine the precise location of target object. Position of extracorporeal objects can be determined using: (a) an egocentric frame of reference, in which the target is localized in relation to the position of the body; and/or (b) an allocentric system, in which target position is determined in relation to stable visual landmarks surrounding the target (Bridgeman 1989; Paillard 1991). The present experiment was based on the premise that (a) the presence of a structured visual environment enables the use of an allocentric frame of reference, and (b) the sole presence of a visual target within a homogeneous background forces the registration of the target location by an egocentric system. Normal subjects and a deafferented patient (i.e., with an impaired egocentric system) pointed to visual targets presented in both visual environments to evaluate the efficiency of the two reference systems. For normals, the visual environment conditions did not affect pointing accuracy. However, kinematic parameters were affected by the presence or absence of a structured visual surrounding. For the deafferented patient, the presence of a structured visual environment permitted a decrease in spatial errors when compared with the unstructured surrounding condition (for movements with or without visual feedback of the trajectory). Overall, results support the existence of an egocentric and an allocentric reference system capable of organizing extracorporeal space during arm movements directed toward visual targets.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1432-1106
    Keywords: ICMS ; Motor cortex ; Cutaneous ; Somatosensory evoked potentials ; Somatosensory cortex ; Sensory gating ; Monkey
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Previous studies have shown that the amplitude of somatosensory evoked potentials is diminished prior to, and during, voluntary limb movement. The present study investigated the role of the motor cortex in mediating this movement-related modulation in three chronically prepared, awake monkeys by applying low intensity intracortical microstimulation (ICMS) to different sites within the area 4 representation of the arm. Air puff stimuli were applied to the contralateral arm or adjacent trunk at various delays following the ICMS. Somatosensory evoked potentials were recorded from the primary somatosensory cortex, areas 1 and 3b, with an intracortical microelectrode. The principal finding of this study was that very weak ICMS, itself producing at most a slight, localized, muscle twitch, produced a profound decrease in the magnitude of the short latency component of the somatosensory evoked potentials in the awake money. Higher intensities of ICMS (suprathreshold for eliciting electromyographic (EMG) activity in the “target” muscle, i.e. that muscle activated by area 4 stimulation) were more likely to decrease the evoked response and produced an even greater decrease. The modulation appeared to be, in part, central in origin since (i) it preceded the onset of EMG activity in 23% of experiments, (ii) direct stimulation of the muscle activated by ICMS, which mimicked the feedback associated with the small ICMS-induced twitch, was often ineffective and (iii) the modulation was observed in the absence of EMG activity. Peripheral feedback, however, may also make a contribution. The results also indicate that the efferent signals from the motor cortex can diminish responses in the somatosensory cortex evoked by cutaneous stimuli, in a manner related to the somatotopic order. The effects are organized so that the modulation is directed towards those neurones serving skin areas overlying, or distal to, the motor output.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1432-1106
    Keywords: Somatosensory cortex ; Sensory gating ; Voluntary movement ; Single units ; Cutaneous ; Monkey
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The present experiments were designed to investigate the neuronal mechanisms, at the level of the primary somatosensory cortex, which underlie the observation that somatosensory cortical potentials evoked by air puff stimuli directed at the forearm are decreased, in a nonspecific and widespread manner, during voluntary movements about the elbow. Unitary discharge was recorded from 131 cells receiving cutaneous input from the hairy skin of the forearm or hand (areas 3b and 1) of two monkeys trained to perform rapid movements of the contralateral arm (elbow flexion or extension). Evoked unitary responses to air puff stimuli applied to the centre of the cell's receptive field, at various delays before and after the onset of movement, were recorded. Movement produced a significant decrease in the short latency excitatory response to the air puff in 89% of the cells (117/131); the remaining 11% were not modulated by movement. This movement-related “gating” of cutaneous inputs occurred regardless of the response pattern of the cells to movement alone, being observed in 91% of the cells with no movement-related discharge, and 89% of those with movement-related discharge. The air puff responses of cells with inputs from the forearm and the dorsum of the hand were all similarly modulated by movement and the modulation was clearly present prior to the onset of movement (mean onset, -66 ms). Variation in the depth of modulation as a function of the direction of the movement, flexion or extension, was observed in only a very small proportion of the modulated units (16/117); most showed no relationship to direction. It is suggested that, in this experimental situation, much of the modulation appears to occur at a pre-cortical level since there was no relationship between the pattern of discharge of cells in relation to movement alone and the pattern of movement-related gating of their responses to the air puff. Effects which might be consistent with a cortical origin for the modulation were only infrequently observed. The present results are strikingly similar to those obtained using the evoked potential method, and thus support the hypothesis that, in this task of rapid elbow movements, movement modulates the transmission of cutaneous signals from the hairy skin of the distal forelimb to primary somatosensory cortex in a nonspecific and widespread fashion.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1432-1106
    Keywords: Amplitude coding ; Final position control ; Spatial calibration ; Proprioception ; Deafferented human
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Two deafferented patients and several control subjects participated in a series of experiments to investigate how accurate single-joint movements are programed, spatially calibrated, and updated in the absence of proprioceptive information. The deafferented patients suffered from a permanent and severe loss of large sensory myelinated fibers below the neck. Subjects performed, with and without vision, sequences of forearm supinations and pronations with two temporal delays between each movement (0 s and 8 s). Overall, the lack of proprioception did not yield any significant decrease in movement accuracy when vision was available. Without vision, the absence of proprioceptive afferents yielded (1) significantly larger spatial errors, (2) amplitude errors similar to those of control subjects, and (3) a significant drift when an 8-s delay was introduced between two successive movements. Subjects also performed, without vision, a 20∘ supination followed by a 20∘ pronation that brought back the wrist to the starting position. On some trials, the supination was blocked unexpectedly by way of a magnetic brake. When the supination was blocked, subjects were already on the second target and no pronation was required when the brake was released. The defferented patients, unaware of the procedure, always produced a 20∘ pronation. These data confirm that deafferented patients were not coding a final position. It rather suggests that they coded an amplitude and translated the spatial distance between the two targets in a corresponding force pulse. Overall, the results highlight the powerful and key role of proprioceptive afferents for calibrating the spatial motor frame of reference.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1432-1106
    Keywords: Ventrolateral nucleus ; Unit activity ; Sleep and wakefulness ; Sleep spindles
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary Neuronal discharges were recorded with extracellular microelectrodes in the ventrolateral nucleus (VL) of the thalamus in cats immobilized with gallamine during waking (W), slow wave sleep (SWS) and fast wave sleep (FWS). These animals had been previously implanted with a plastic cylinder under general anesthesia, at least two days before chronic recording. The units recorded responded monosynaptically to brachium conjunctivum (BC) stimulation and were at times identified as true thalamocortical relay cells by antidromic activation from motor cortex stimulation. During W the activity is continuous and sustained, but irregular. During SWS it is at a lower frequency and in short duration, high frequency bursts separated by long silent intervals and 25% of the neurons show true rhythmic activity at a frequency of 1–4/sec but more often at 2–3/sec. During FWS the activity is in long duration high frequency bursts. Interval histograms and autocorrelograms allow more precise quantification of these data. In SWS there appears to be no correlation between unit firing of neurons and the spindles recorded in the area of the motor cortex to which they project. A correlation, however, appears after injection of small doses of barbiturates. Neurons in the nucleus reticularis thalami show an inverse relationship in their activity to that of VL neurons. They increase their frequency from W to SWS and tend to fire more during cortical spindles than VL neurons.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...