Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: By taking up serotonin (5-hydroxytryptamine, 5-HT) released in the extracellular space, the 5-HT transporter (5-HTT) regulates central 5-HT neurotransmission. Possible adaptive changes in 5-HT neurotransmission in knock-out mice that do not express the 5-HT transporter were investigated with special focus on 5-HT1A and 5-HT1B receptors. Specific labelling with radioligands and antibodies, and competitive RT-PCR, showed that 5-HT1A receptor protein and mRNA levels were significantly decreased in the dorsal raphe nucleus (DRN), increased in the hippocampus and unchanged in other forebrain areas of 5-HTT–/– vs. 5-HTT+/+ mice. Such regional differences also concerned 5-HT1B receptors because a decrease in their density was found in the substantia nigra (−30%) but not the globus pallidus of mutant mice. Intermediate changes were noted in 5-HTT+/– mice compared with 5-HTT+/+ and 5-HTT–/– animals. Quantification of [35S]GTP-γ-S binding evoked by potent 5-HT1 receptor agonists confirmed such changes as a decrease in this parameter was noted in the DRN (−66%) and the substantia nigra (−30%) but not other brain areas in 5-HTT–/– vs. 5-HTT+/+ mice. As expected from actions mediated by functional 5-HT1A and 5-HT1B autoreceptors, a decrease in brain 5-HT turnover rate after i.p. administration of ipsapirone (a 5-HT1A agonist), and an increased 5-HT outflow in the substantia nigra upon local application of GR 127935 (a 5-HT1B/1D antagonist) were observed in 5-HTT+/+ mice. Such effects were not detected in 5-HTT–/– mice, further confirming the occurrence of marked alterations of 5-HT1A and 5-HT1B autoreceptors in these animals.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-1912
    Keywords: Tertatolol ; 5-HT1A receptor ; Dorsal raphe nucleus ; Adenylate cyclase ; Nerve impulse flow ; 5-HT turnover ; 8-OH-DPAT
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The potential 5-HT1A antagonist properties of the ß-antagonist tertatolol were assessed using biochemical and electrophysiological assays in the rat. (±) Tertatolol bound with high affinity (Ki = 38 nM) to 5-HT1A sites labelled by [3H]8-OH-DPAT in hippocampal membranes. The (−)stereoisomer (Ki = 18 nM) was about 50-fold more potent than the (+)stereoisomer (Ki = 864 nM) to inhibit the specific binding of [3H]-8-OHDPAT. As expected of a 5-HT1A antagonist, (−)tertatolol prevented in a concentration-dependent manner (Ki = 24 nM) the inhibitory effect of 8-OH-DPAT on forskolin-stimulated adenylate cyclase activity in rat hippocampal homogenates. Furthermore in vivo pretreatment with (−)tertatolol (5 mg/kg s.c.) significantly reduced the inhibitory influence of 8-OH-DPAT (0.3 mg/ kg s.c.) on the accumulation of 5-hydroxytryptophan in various brain areas after the blockade of aromatic L-amino acid decarboxylase by NSD-1015 (100 mg/kg i.p.). In vitro (in brainstem slices; Ki ∼ 50 nM) and in vivo (in chloral hydrate anaesthetized rats; ID50 ∼ 0.40 mg/kg i.v.), (−)tertatolol prevented the inhibitory effects of the 5-HT1A receptor agonists 8-OH-DPAT, ipsapirone and lesopitron on the firing rate of serotoninergic neurones within the dorsal raphe nucleus. In about 25% of these neurones, the basal firing rate was significantly increased by (−)tertatolol (up to +47% in vitro, and +30% in vivo). These data indicate that (-)tertatolol is a potent competitive antagonist at both pre (in the dorsal raphe nucleus) - and post (in the hippocampus) - synaptic 5-HT1A receptors in the rat brain.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-1912
    Keywords: Key words Fluoxetine ; Paroxetine ; Serotonin ; 5-HT1A autoreceptors ; Dorsal raphe nucleus ; Firing ; Autoradiography
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract  Electrophysiological and autoradiographic approaches were used to assess possible changes in 5-hydroxytryptamine (serotonin) 5-HT1A receptors in the rat dorsal raphe nucleus after a subchronic treatment with fluoxetine or paroxetine, two specific serotonin reuptake inhibitors with antidepressant properties. Fluoxetine or paroxetine were injected daily (5 mg/kg, i.p.) for various time periods up to 21 days. Electrophysiological recordings performed 24 h after the last injection showed that the potency of the 5-HT1A receptor agonist, 8-OH-DPAT, to depress the firing of serotoninergic neurons in the dorsal raphe nucleus within brain stem slices was significantly reduced as early as after a 3-day treatment with either drug. The proportion of recorded neurons showing desensitization of somatodendritic 5-HT1A autoreceptors increased along the treatment from ∼40% on the 3rd day to 60–80% on the 21st day. At no time during the treatment, was the specific binding of [3H]8-OH-DPAT (agonist radioligand) or [3H]WAY-100 635 (antagonist radioligand) to 5-HT1A receptors modified in the dorsal raphe nucleus or in other brain areas, suggesting that neither the density nor the coupling of these receptors to G-proteins were probably altered in rats injected with fluoxetine or paroxetine for up to 21 days. These results show that adaptive desensitization of somatodendritic 5-HT1A autoreceptors within the dorsal raphe nucleus can already be detected after a 3-day treatment with selective serotonin reuptake inhibitors. Rather than the desensitization per se, it may be the progressive increase in the number of serotoninergic neurons with desensitized 5-HT1A autoreceptors which plays a critical role in the (slowly developing) antidepressant action of these drugs.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 45 (1982), S. 230-232 
    ISSN: 1432-1106
    Keywords: Hippocampal theta rhythm ; Septal stimulation ; Infant rat
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The threshold current of septal stimulation required to drive the hippocampal theta rhythm was investigated as a function of stimulation frequency in male rats aged 12–19 days. The minimum in the threshold-frequency function at 7.7 Hz, characteristic of adult male rats, appeared at 15–16 days. Before that age the relation between frequency and threshold was monotonic, as in adult female rats.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...