Bibliothek

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Digitale Medien
    Digitale Medien
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 18 (1994), S. 161-173 
    ISSN: 0887-3585
    Schlagwort(e): X-ray crystallography ; disulfide oxidoreductases ; FAD ; NADPH ; drug target ; Chagas' disease ; Chemistry ; Biochemistry and Biotechnology
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Medizin
    Notizen: The three-dimensional structure of trypanothione reductase (TR) (EC 1.6.4.8) from Trypanosoma cruzi has been solved at 0.33 nm resolution by molecular replacement using the structure of C. fasciculata TR as a starting model. Elucidation of the T. cruzi TR structure represents the first step in the rational design of a drug against Chagas' disease. The structure of T. cruzi TR is compared with those of C. fasciculata TR as well as human and E. coli glutathione reductase (GR). In the FAD-binding domain, TR has two insertions, each about 10 residues long, which do not occur in GR. The first one is a rigid loop stabilizing the position of helix 91-117 which is responsible for the wider active site of TR as compared to GR. The second insertion does not occur where it is predicted by sequence alignment; rather the residues extend three strands of the 4-stranded β-sheet by one or two residues each. This increases the number of hydrogen bonds within the sheet structure. The structure of the NADPH.TR complex has been solved at 0.33 nm resolution. The nicotinamide ring is sandwiched between the flavin ring and the side chain of Phe-198 which undergoes the same conformational change upon coenzyme binding as Tyr-197 in GR. In addition to Arg-222 and Arg-228, which are conserved in TR and GR, Tyr-221 - the last residue of the second β-sheet strand of the βαβ dinucleotide binding fold - is in hydrogen bonding distance to the 2′ phosphate group of NADPH. © 1994 John Wiley & Sons, Inc.
    Zusätzliches Material: 7 Ill.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Digitale Medien
    Digitale Medien
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 24 (1996), S. 73-80 
    ISSN: 0887-3585
    Schlagwort(e): X-ray crystallography ; flavoenzyme ; drug target ; Trypanosoma cruzi ; Chemistry ; Biochemistry and Biotechnology
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Medizin
    Notizen: The three-dimensional structure of the complex between Trypanosoma cruzi trypanothione reductase (TR) (EC 1.6.4.8) and the antiparasitic drug mepacrine (quinacrine) has been solved at 2.9 Å resolution. Mepacrine is a competitive inhibitor of TR but does not affect human glutathione reductase (GR), a closely related host enzyme. Of particular importance for inhibitor binding are four amino acid residues in the disulfide substrate-binding site of TR that are not conserved in human GR, namely, Glu-18 (Ala-34 in GR), Trp-21 (Arg-37), Ser-109 (Ile-113), and Met-113 (Asn-117).The acridine ring of mepacrine is fixed at the active site close to the hydrophobic wall formed by Trp-21 and Met-113. Specific pairwise interactions between functional groups of the drug and amino acid side chains include the ring nitrogen and Met-113, the chlorine atom and Trp-21, and the oxymethyl group and Ser-109. The alkylamino chain of mepacrine points into the inner region of the active site and is held in position by a solvent-mediated hydrogen bond to Glu-18.The structure of the complex shows for the first time the atomic interactions between TR and an inhibitory ligand. This is a crucial step towards the rational design of inhibitors that might be suited as drugs against Chagas' disease. © 1996 Wiley-Liss, Inc.
    Zusätzliches Material: 4 Ill.
    Materialart: Digitale Medien
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...