Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: The aliphatic hexacarbons n-hexane, methyl-nbutyl ketone, and 2,5-hexanedione are known to produce a peripheral neuropathy that involves an accumulation of 10-nm neurofilaments above the nodes of Ranvier in the spinal cord and peripheral nerve. In this study, rats were treated with 0.5% 2,5-hexanedione in drinking water for 180 days, and their spinal cord neurofilaments were isolated after development of the neuropathy. Visualization by sodium dodecyl sulfate-polyacrylamide gel electro phoresis revealed a significant reduction in content of the neurofilament triplet proteins in treated animals and the presence of bands migrating at 138K and 260K that were not present in control animals. Analysis of the lanes using immunoblotting procedures and anti-70K, anti-160K, and anti-210K neurofilament antibodies revealed many crosslinked peptides. The 138K band cross-reacted with the anti-160K neurofilament antibody. This suggests that the 138K band is an intramolecular cross-link of the 160K neurofilament subunit. In addition to this peptide, there were numerous high-molecular-weight peptides immuno reactive with all three neurofilament protein antibodies. In addition to cross-linking, there was also a diminished amount of immunoreactive breakdown product of all three neurofilament proteins. This report demonstrates direct evidence of 2,5-hexanedione-induced cross-linking of neurofilament proteins in vivo, which maybe responsible for the accumulation of neurofilament proteins pathognomic of this neuropathy.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: The effect of a single oral 750 mg/kg dose of tri-o-cresyl phosphate (TOCP) on the endogenous phosphorylation of brain and spinal cord proteins was assessed in hens during the development of and recovery from delayed neurotoxicity. Crude membrane and cytosolic fractions were prepared from the brains and spinal cords of control and TOCP-treated hens at 1, 7, 14, 21, 35, and 55 days after treatment. Brain and spinal cord protein phosphorylation with [γ-32P]ATP was analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), autoradiography, and microdensitometry. TOCP administration conferred calcium and calmodulin dependence on the phosphorylation of a few brain cytosolic proteins and caused an increase in the phosphorylation of a number of other cytosolic and membrane proteins. This effect of TOCP was large in magnitude, and its time course reflected the onset of and recovery from the signs of ataxia and paralysis associated with delayed neurotoxicity in the hen. The molecular weights (Mr) and maximal phosphorylation (percent of control) for the most prominently affected bands were as follows: brain cytosol—50K (183%), 55K (575%), 60K (529%), 65K (273%), and 70K (548%); brain membranes—50K (622%) and 60K (697%); and spinal cord cytosol—20K (182%). The role of endogenous phosphorylation reactions in and their potential usefulness as biochemical indicators of delayed neurotoxicity are being explored further.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...