Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    FEBS Letters 356 (1994), S. 174-178 
    ISSN: 0014-5793
    Keywords: Amino acid transport ; Counterexchange ; Expression cloning ; Oocyte ; Xenopus laevis
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology , Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    The journal of membrane biology 95 (1987), S. 187-187 
    ISSN: 1432-1424
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    The journal of membrane biology 143 (1995), S. 29-35 
    ISSN: 1432-1424
    Keywords: Na+-K+-ATPase ; Electrophysiology ; K+ channel ; Tetraethylammonium ; Conductance regulation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract Using the two-microelectrode voltage clamp technique in Xenopus laevis oocytes, we estimated Na+-K+-ATPase activity from the dihydroouabain-sensitive current (I DHO) in the presence of increasing concentrations of tetraethylammonium (TEA+; 0, 5, 10, 20, 40 mm), a well-known blocker of K+ channels. The effects of TEA+ on the total oocyte currents could be separated into two distinct parts: generation of a nonsaturating inward current increasing with negative membrane potentials (V M) and a saturable inhibitory component affecting an outward current easily detectable at positive V M. The nonsaturating component appears to be a barium-sensitive electrodiffusion of TEA+ which can be described by the Goldman-Hodgkin-Katz equation, while the saturating component is consistent with the expected blocking effect of TEA+ on K+ channels. Interestingly, this latter component disappears when the Na+-K+-ATPase is inhibited by 10 μm DHO. Conversely, TEA+ inhibits a component of I DHO with a k d of 25±4 mm at +50 mV. As the TEA+-sensitive current present in I DHO reversed at −75 mV, we hypothesized that it could come from an inhibition of K+ channels whose activity varies in parallel with the Na+-K+-ATPase activity. Supporting this hypothesis, the inward portion of this TEA+-sensitive current can be completely abolished by the addition of 1 mm Ba2+ to the bath. This study suggests that, in X. laevis oocytes, a close link exists between the Na-K-ATPase activity and TEA+-sensitive K+ currents and indicates that, in the absence of effective K+ channel inhibitors, I DHO does not exclusively represent the Na+-K+-ATPase-generated current.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    The journal of membrane biology 150 (1996), S. 175-184 
    ISSN: 1432-1424
    Keywords: Key words: Patch clamp — Calcium activated K channel — Osteoblast — PTH — PGE2
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract. Patch clamp experiments were performed on two human osteosarcoma cell lines (MG-63 and SaOS-2 cells) that show an osteoblasticlike phenotype to identify and characterize the specific K channels present in these cells. In case of MG-63 cells, in the cell-attached patch configuration (CAP) no channel activity was observed in 2 mm Ca Ringer (control condition) at resting potential. In contrast, a maxi-K channel was observed in previously silent CAP upon addition of 50 nm parathyroid hormone (PTH), 5 nm prostaglandin E2 (PGE2) or 0.1 mm dibutyryl cAMP + 1 μm forskolin to the bath solution. However, maxi-K channels were present in excised patches from both stimulated and nonstimulated cells in 50% of total patches tested. A similar K channel was also observed in SaOS-2 cells. Characterization of this maxi-K channel showed that in symmetrical solutions (140 mm K) the channel has a conductance of 246 ± 4.5 pS (n = 7 patches) and, when Na was added to the bath solution, the permeability ratio (PK/PNa) was 10 and 11 for MG-63 and SaOS-2 cells respectively. In excised patches from MG-63 cells, the channel open probability (P o ) is both voltage- (channel opening with depolarization) and Ca-dependent; the presence of Ca shifts the P o vs. voltage curve toward negative membrane potential. Direct modulation of this maxi-K channel via protein kinase A (PKA) is very unlikely since in excised patches the activity of this channel is not sensitive to the addition of 1 mm ATP + 20 U/ml catalytic subunit of PKA. We next evaluated the possibility that PGE2 or PTH stimulated the channel through a rise in intracellular calcium. First, calcium uptake (45Ca++) by MG-63 cells was stimulated in the presence of PTH and PGE2, an effect inhibited by Nitrendipine (10 μm). Second, whereas PGE2 stimulated the calcium-activated maxi-K channel in 2 mm Ca Ringer in 60% of patches studied, in Ca-free Ringer bath solution, PGE2 did not open any channels (n = 10 patches) nor did cAMP + forskolin (n = 3 patches), although K channels were present under the patch upon excision. In addition, in the presence of 2 mm Ca Ringer and 10 μm Nitrendipine in CAP configuration, PGE2 (n = 5 patches) and cAMP + forskolin (n = 2 patches) failed to open K channels present under the patch. As channel activation by phosphorylation with the catalytic subunit of PKA was not observed, and Nitrendipine addition to the bath or the absence of calcium prevented the opening of this channel, it is concluded that activation of this channel by PTH, PGE2 or dibutyryl cAMP + forskolin is due to an increase in intracellular calcium concentration via Ca influx.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    The journal of membrane biology 149 (1996), S. 1-8 
    ISSN: 1432-1424
    Keywords: Key words: Exchange — Cotransport — rBAT — Transporter — Stoichiometry — Oocyte
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract. The rBAT protein, when expressed in Xenopus oocytes, was previously shown to reproduce the selectivity of the Na+-independent neutral and basic amino acid transport system called bo,+. More recently, the capacity of rBAT to generate a transmembrane current was demonstrated when addition of neutral amino acids stimulated the efflux of cations (presumably basic amino acids) in rBAT-injected oocytes. In the present paper, aminoisobutyric acid (AIB), a neutral amino acid analogue, was shown to induce outward currents (efflux of basic amino acids) through rBAT similar to those caused by alanine in terms of affinity, maximal currents and I-V curves. Despite generating similar currents, the AIB transport rate was more than 30 times lower than that of alanine, thus challenging the assumption that rBAT functions as a classical exchanger. Experiments using a cut-open oocyte voltage clamp demonstrated that AIB was capable of stimulating rBAT-mediated currents from either side of the membrane. AIB, like alanine, was able to stimulate the efflux of radiolabeled alanine and arginine while no rBAT-mediated efflux was measurable in the absence of external rBAT substrates. These results demonstrate that (i) the presence of amino acids is required on both sides of the membrane for rBAT to mediate amino acid flux and thus rBAT must be some type of exchanger but (ii) rBAT-mediated amino acid influx is not stoichiometrically related to the efflux. A model of a ``double gated pore'' is proposed to account for these properties of rBAT, which contravene standard models of exchangers and other transporters.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    The journal of membrane biology 155 (1997), S. 229 -237 
    ISSN: 1432-1424
    Keywords: Key words: Membrane potential — Ionic conductances — Hypertonic shock — Isolated collapsed proximal tubule — pH — Cellular volume
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract. Collapsed proximal convoluted tubules (PCT) shrink to reach a volume 20% lower than control and do not exhibit regulatory volume increase when submitted to abrupt 150 mOsm/kg hypertonic shock. The shrinking is accompanied by a rapid depolarization of the basolateral membrane potential (V BL) of 8.4 ± 0.5 mV, with respect to a control value of −54.5 ± 1.9 mV (n= 15). After a small and transient hyperpolarization, V BL further depolarizes to reach a steady depolarization of 19.5 ± 1.5 mV (n= 15) with respect to control. In the post-control period, V BL returns to −55.8 ± 1.5 mV. The basolateral partial conductance to K+ (t K ) which is 0.17 ± 0.01 (n= 5) in control condition, decreases rapidly to nonmeasurable values during the hypertonic shock and returns to 0.23 ± 0.03 in the post-control period. The basolateral partial conductance to Cl− (t Cl), which is 0.05 ± 0.02 (n= 5) in control, also decreases in hypertonicity to a nonmeasurable value and returns to 0.03 ± 0.01 in post control. The partial conductance mediated by the Na-HCO3 cotransporter (t NaHCO3), which is 0.48 ± 0.06 (n= 5) in control condition, remains the same at 0.44 ± 0.05 (n= 5) during the hypertonic period. Similarly, the membrane absolute conductance mediated by the Na-HCO3 cotransporter (G Na-HCO3) does not vary appreciably. Concomitant with cell shrinkage, intracellular pH (pH i ) decreases from a control value of 7.26 ± 0.01 to 7.13 ± 0.02 (n= 12) and then remains constant. Return to control solution brings back pH i to 7.28 ± 0.03. From these results, we conclude that in collapsed PCT, a sustained decrease in cellular volume leads to cell acidification and to inhibition of K+ and Cl− conductances.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...