Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford UK : Blackwell Science Ltd.
    Journal of neurochemistry 73 (1999), S. 0 
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract : Some serotonin 5-HT3 receptor ligands of tropeine structure have been recently shown to modulate ionophore function and binding of glycine receptors. This led us to study the effects of the tropeines tropisetron and atropine on recombinant human glycine receptors transiently expressed in Xenopus oocytes by using whole-cell voltage-clamp electrophysiology. Glycine currents were inhibited by atropine in an apparently competitive manner and with considerable selectivity of the tropeines for α2 versus α1 subunits. Coexpression of β with α subunits and replacement of the N-terminal region of the α1 subunits by the corresponding β segment resulted in similar increases in the inhibitory potencies. Our data suggest common sites of the tropeines for inhibition on the N-terminal region of glycine receptors. The point mutations R271K and R271L of the α1 subunit decreased, whereas a T112A substitution increased, the inhibition constants (Ki) of the tropeines. These changes in the Ki values of the tropeines were associated with opposite changes in the EC50 of glycine. Selectivities for the tropeines versus glycine (EC50/Ki) varied within three orders of magnitude. These results, when expressed in terms of free energy changes, can be interpreted according to a two-state receptor model.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Inhibitory glycine receptors (GlyRs) are known to mediate postsynaptic inhibition in spinal cord, brain stem and some higher brain regions. Several developmentally and regionally regulated GlyR isoforms exist, which result from a differential expression of the GlyR α (α1-α4) and β subunit genes. Currently, very little is known about GlyRs containing the α4 subunit, whose existence was predicted from a partial genomic sequence. Here, we describe the isolation of complementary DNA (cDNA) sequences for the mouse and chick GlyR α4 subunits. We show that a mouse GlyR α4 subunit full-length cDNA directs the formation of functional homo-oligomeric strychnine-sensitive GlyRs in Xenopus laevis oocytes and mammalian cells, and that these resemble GlyRs composed of the α1 subunit in pharmacological profile and single-channel properties. In situ hybridization reveals high levels of GlyR α4 subunit transcripts in the embryonic (E13) chick spinal cord, lumbosacral sympathetic ganglia and dorsal root ganglia. The avian GlyR α4 subunit gene also shows male-specific expression in the developing genital ridge. The pharmacological profile of α4 subunit-containing receptors and deduced location of the avian GlyR α4 subunit are consistent with it being a component of the embryonic excitatory GlyRs previously identified in sympathetic neurons. Our data also suggest a novel role for GlyRs in the maturation of reproductive organs.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    European journal of neuroscience 11 (1999), S. 0 
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: The peripheral membrane protein gephyrin is essential for the postsynaptic localization of inhibitory glycine receptors (GlyRs). Binding of gephyrin to the GlyR β subunit is mediated by a sequence motif located in the intracellular loop region connecting transmembrane segments 3 and 4. Here, insertion of this binding motif is shown to alter the subcellular distribution of an excitatory neurotransmitter receptor in transfected mammalian cells. Upon coexpression with gephyrin, a mutant N-methyl-d-aspartate (NMDA) receptor containing NMDA receptor 1 (NR1) subunits which harboured a gephyrin-binding motif within its cytoplasmic tail region, was targeted to intracellular gephyrin-rich domains, as previously observed for the GlyR β subunit. Our data indicate that a gephyrin-binding motif located in a cytoplasmic domain of an integral membrane protein suffices for routing to gephyrin-rich domains.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science, Ltd
    European journal of neuroscience 16 (2002), S. 0 
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: The divalent cation zinc is known to modulate chloride currents carried by native and recombinant mammalian glycine receptors (GlyRs). To unravel the effect of Zn2+ on glycinergic neurotransmission, inhibitory postsynaptic currents (IPSC) of rat spinal neurons grown in culture were analysed in the absence and presence of Zn2+. Low concentrations of Zn2+ (0.5 and 5 µm) augmented the mean amplitude of miniature IPSCs by ≈ 40% over values obtained in the absence of zinc, whereas higher concentrations of Zn2+ (50 µm) significantly decreased mean amplitude values. Remarkably, low concentrations of Zn2+ also significantly increased the mean frequency of miniature IPSCs. This effect was blocked by the P2X receptor antagonists PPADS and suramin, indicating the presence of Zn2+-sensitive presynaptic P2X receptors on glycinergic terminals. Immunostaining with antibodies against different P2X receptor subtypes revealed that P2X2 receptors partially colocalize with the GlyR. Potentiating concentrations of Zn2+ also affected the kinetics of miniature and evoked IPSCs by significantly prolonging their decay time constants. Electrophysiological analysis of heterologously expressed glycine transporters (GlyT) revealed for GlyT2 zero, and for GlyT1 a modest (〈 20%), reduction of glycine uptake in the presence of 5 µm Zn2+, indicating that prolongation of glycinergic IPSCs by Zn2+ is not due to inhibition of glycine removal from the synaptic cleft. Together, these results suggest that Zn2+ is a potent modulator of glycinergic synaptic transmission which increases in a synergistic manner the agonist affinity of both presynaptic P2X2 receptors and postsynaptic GlyRs.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-1351
    Keywords: Cochlea ; Place-frequency map ; Subterranean mammal
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary The cochlea of the mole rat Cryptomys hottentotus was investigated with physiological and anatomical methods. In order to reveal the place-frequency map of the cochlea, iontophoretic HRP-applications were made in the cochlear nucleus at physiologically characterized locations. Subsequent HRP-transport in auditory nerve fibres and labeling patterns of spiral ganglion cells within the cochlea were evaluated. A cochlear place-frequency map was constructed from 17 HRP-applications in the cochlear nucleus at positions where neurons had characteristic frequencies between 0.1 and 12.6 kHz. As in other mammals, high frequencies were found to be represented at the cochlear base, low frequencies at the cochlear apex. The placefrequency map had three distinct parts which were characterized by their different slopes. A clear overrepresentation of the frequencies between 0.6 and 1 kHz was revealed, in this frequency range the slope of the place-frequency map amounted to 5.3 mm/octave. As calculated from the regression analysis, below 0.6 kHz the slope of the cochlear place-frequency map amounted to 0.24 mm/octave, above 1 kHz to 0.9 mm/octave. As in other mammals width of the basilar membrane (BM) increased from the cochlear base towards the cochlear apex. Also in concordance with the findings in other mammals, BM-thickness decreased from the cochlear base to the apex. However, it was remarkable to find that there was no or little change in BM-width and thickness between 40 and 85% BM-length. It was also revealed that scala tympani was only 1/10th the size found in the rat or other mammals of similar body size. On the basis of the cochlear place-frequency map and the morphological findings we speculate that in Cryptomys hottentotus an acoustic fovea is present in the frequency range between 0.6 and 1 kHz. In analogy to echolocating bats, about half of the cochlea is devoted to the analysis of a narrow frequency band within the hearing range.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...