Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    The @journal of organic chemistry 52 (1987), S. 3381-3386 
    ISSN: 1520-6904
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 0899-0042
    Keywords: amplification of enantiomeric excess ; autocatalysis ; origin of optical activity ; models ; nonlinear kinetics ; simulations ; stereoselectivity ; tetralin hydroperoxide ; Chemistry ; Organic Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The autoxidation of tetralin is treated as a model reaction system to define the applicability of stereospecific autocatalysis. This concept, predicting a spontaneous amplification of enantiomeric excess generated by an autocatalytic chemical reaction, is used in several theoretical models as an explanation for the origin of natural optical activity. The reaction system investigated obeys the basic criteria of these models: a chiral intermediate (tetralin hydroperoxide) is produced from an achiral substrate (tetralin) via an autocatalytic pathway where the feedback mechanism is expected to generate a state of broken chiral symmetry. In order to test the amplification capacity of this reaction a computer analysis of the kinetic scheme is performed. This simulation is derived from the known kinetic scheme of autoxidation and is validated by fitting the experimentally observed data of hydroperoxide evolution. Calculations show that this model allows powerful amplification of enantiomeric excess and a transient amplification of the optical rotation. It is also demonstrated that the model system exhibits pronounced sensitivity toward any loss of absolute configuration of the involved chiral species. Since an amplification effect results exclusively at a high degree of stereoselectivity, it is concluded that stereospecific autocatalysis is possible in systems which show template reactions, crystallization, or colloidal effects. © 1993 Wiley-Liss, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    International Journal of Chemical Kinetics 29 (1997), S. 825-834 
    ISSN: 0538-8066
    Keywords: Chemistry ; Physical Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: A reaction mechanism for the photooxidation of dimethyldisulfide (DMDS) in aqueous acetonitrile has been established by kinetic modeling the UV absorbance vs. time curves under continuous irradiation. The model, built according to the known solution reactivity of oxysulfur radicals [1], consists of 22 steps involving 6 radical and 10 nonradical species. The first steps of the mechanism are the homolytic cleavage of the DMDS S - S bond with formation of methanethiyl radicals (CH3S·) followed by addition of these radicals to molecular oxygen. There are photoequilibria between thiyl (CH3S·), sulfinyl (CH3S·), and sulfonyl (CH3SO2·) radicals and the corresponding molecular species (methyl methanethiosulfinate CH3S(O)SCH3 or MMTSI, methyl methanethiosulfonate CH3S(O)2SCH3 or MMTS and meth-anesulfinic acid CH3S(O)OH or MSIA) which appear as long lived intermediates. Reactions of sulfonyl radicals with oxygen lead to methanesulfonic acid (CH3S(O)2OH) or MSA. Cleavage of sulfonyl radicals gives SO2 and CH3·, the parent compounds of sulfuric (H2SO4) and methanoic (HCOOH) acids. The predictive power of the model was tested at higher initial concentration of DMDS in anhydrous and aqueous acetonitrile. In these conditions, the proposed mechanism gives a semiquantitative description of the course of the reaction and reproduces the kinetic behavior of the long lived intermediates. © 1997 John Wiley & Sons, Inc. Int J Chem Kinet 29: 825-834, 1997
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...