Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science, Ltd
    Molecular microbiology 41 (2001), S. 0 
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: DNA double-strand break repair can be accomplished by homologous recombination when a sister chromatid or a homologous chromosome is available. However, the study of sister chromatid double-strand break repair in prokaryotes is complicated by the difficulty in targeting a break to only one copy of two essentially identical DNA sequences. We have developed a system using the Escherichia coli chromosome and the restriction enzyme EcoKI, in which double-strand breaks can be introduced into only one sister chromatid. We have shown that the components of the RecBCD and RecFOR ‘pathways’ are required for the recombinational repair of these breaks. Furthermore, we have shown a requirement for SbcCD, the prokaryotic homologue of Rad50/Mre11. This is the first demonstration that, like Rad50/Mre11, SbcCD is required for recombination in a wild-type cell. Our work suggests that the SbcCD–Rad50/Mre11 family of proteins, which have two globular domains separated by a long coiled-coil linker, is specifically required for the co-ordination of double-strand break repair reactions in which two DNA ends are required to recombine at one target site.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford BSL : Blackwell Science Ltd
    Molecular microbiology 35 (2000), S. 0 
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: The expansion of normally polymorphic CTG microsatellites in certain human genes has been identified as the causative mutation of a number of hereditary neurological disorders, including Huntington's disease and myotonic dystrophy. Here, we have investigated the effect of methyl-directed mismatch repair (MMR) on the stability of a (CTG)43 repeat in Escherichia coli over 140 generations and find two opposing effects. In contrast to orientation-dependent repeat instability in wild-type E. coli and yeast, we observed no orientation dependence in MMR−E. coli cells and suggest that, for the repeat that we have studied, orientation dependence in wild-type cells is mainly caused by functional mismatch repair genes. Our results imply that slipped structures are generated during replication, causing single triplet expansions and contractions in MMR− cells, because they are left unrepaired. On the other hand, we find that the repair of such slipped structures by the MMR system can go awry, resulting in large contractions. We show that these mutS-dependent contractions arise preferentially when the CTG sequence is encoded by the lagging strand. The nature of this orientation dependence argues that the small slipped structures that are recognized by the MMR system are formed primarily on the lagging strand of the replication fork. It also suggests that, in the presence of functional MMR, removal of 3 bp slipped structures causes the formation of larger contractions that are probably the result of secondary structure formation by the CTG sequence. We rationalize the opposing effects of MMR on repeat tract stability with a model that accounts for CTG repeat instability and loss of orientation dependence in MMR− cells. Our work resolves a contradiction between opposing claims in the literature of both stabilizing and destabilizing effects of MMR on CTG repeat instability in E. coli.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford BSL : Blackwell Science Ltd, UK
    Molecular microbiology 28 (1998), S. 0 
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: We have isolated and sequenced a set of deletions stimulated by DNA palindromes in Escherichia coli. All of the deletions are asymmetric with respect to the parental sequence and have occurred at short direct repeats. This is consistent with deletion by strand slippage during DNA replication. The orientation of the asymmetry in such deletion products is diagnostic of the direction of the strand slippage event. It is therefore also diagnostic of its occurrence on the leading or lagging strand of the replication fork when the direction of replication is known. In all cases in which the orientation of the asymmetry could be determined with respect to DNA replication, the products were consistent with a preference for deletion on the lagging strand of the fork. The data include replication slippage in three situations: on the chromosome of E. coli, in bacteriophage λ and in high-copy-number pUC-based plasmids.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Molecular microbiology 23 (1997), S. 0 
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: Formation of araB-lacZ coding-sequence fusions is a key adaptive mutation system. Eighty-four independent araB-lacZ fusions were sequenced. All fusions carried rearranged MuR linker sequences between the araB and lacZ domains indicating that they arose from the standard intermediate of the well-characterized Mu DNA rearrangement process, the strand transfer complex (STC). Five non-standard araB-lacZ fusions isolated after indirect sib selection had novel structures containing back-to-back inverted MuR linkers. The observation that different isolation procedures gave rise to standard and non-standard fusions indicates that cellular physiology can influence late steps in the multi-step biochemical sequence leading to araB-lacZ fusions. Each araB-lacZ fusion contained two novel DNA junctions. The MuR-lacZ junctions showed‘hot-spotting’according to established rules for Mu target selection. The araB-MuR and MuR-MuR junctions all involved exchanges at regions of short sequence homology. More extensive homology between MuR and araB sequences indicates potential STC isomerization into a resolvable four-way structure analogous to a Holliday junction. These results highlight the molecular complexity of araB-lacZ fusion formation, which may be thought of as a multi-step cell biological process rather than a unitary biochemical reaction.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Oxford BSL : Blackwell Science Ltd
    Molecular microbiology 22 (1996), S. 0 
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Molecular microbiology 48 (2003), S. 0 
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Molecular microbiology 26 (1997), S. 0 
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: We report here that homologous recombination functions are required for the viability of Escherichia coli cells maintaining a 240 bp chromosomal inverted repeat (palindromic) sequence. Wild-type cells can successfully replicate this palindrome but recA, recB or recC mutants carrying the palindrome are unviable. The dependence on homologous recombination for cell viability is overcome in sbcC mutants. Directly repeated copies of the DNA containing the palindrome are rapidly resolved to single copies in wild-type cells but not in sbcC mutants. Our results suggest that double-strand breaks introduced at the palindromic DNA sequence by the SbcCD nuclease are repaired by homologous recombination. The repair is conservative and the palindrome is retained in the repaired chromosome. We conclude that SbcCD can attack secondary structures but that repair conserves the DNA sequence with the potential to fold.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 305 (1983), S. 448-451 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] A perfect palindrome of the non-essential 1,600-bp ? Xbal-EcoRl fragment was constructed between EcoRl sites 1 and 2 of phage ? thus replacing the non-essential EcoRl ? fragment. This was done by Xbal restriction of ? DNA with a normal EcoRl ? fragment and with an inverted EcoRl ? fragment ...
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    BioEssays 16 (1994), S. 893-900 
    ISSN: 0265-9247
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: Long DNA palindromes pose a threat to genome stability. This instability is primarily mediated by slippage on the lagging strand of the replication fork between short directly repeated sequences close to the ends of the palindrome. The role of the palindrome is likely to be the juxtaposition of the directly repeated sequences by intrastrand base-pairing. This intra-strand base-pairing, if present on both strands, results in a cruciform structure. In bacteria, cruciform structures have proved difficult to detect in vivo, suggesting that if they form, they are either not replicated or are destroyed. SbcCD, a recently discovered exonuclease of Escherichia coli, is responsible for preventing the replication of long palindromes. These observations lead to the proposal that cells may have evolved a post-replicative mechanism for the elimination and/or repair of large DNA secondary structures.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...