Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Macromolecules 19 (1986), S. 1063-1068 
    ISSN: 1520-5835
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Macromolecules 20 (1987), S. 1924-1927 
    ISSN: 1520-5835
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Stamford, Conn. [u.a.] : Wiley-Blackwell
    Polymer Engineering and Science 30 (1990), S. 431-435 
    ISSN: 0032-3888
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Isothermal aging after a quench from above the glass-transition temperature (Tg) to below it was studied as a function of cross-link density for model epoxy networks using small deformation stress relaxation experiments. We found that time-aging time and time-cross-link density superposition principles described the changes observed in the Viscoelastic behavior of the epoxy networks. The aging response in the nonlinear Viscoelastic regime was also studied using creep experiments for one of the networks. It was found that upon aging near to the conventional glass-transition temperature, the time required for the glass to age into structural equilibrium was independent of the magnitude of the applied stress. This result suggests that large stresses do not erase physical aging (or cause rejuvenation of the glasses).
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 35 (1997), S. 1561-1573 
    ISSN: 0887-6266
    Keywords: glass transition ; isobaric ; isochoric ; polymer ; poly(carbonate) ; PVT behavior ; free volume theory ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Pressure-volume-temperature (PVT) studies were performed on a glass-forming polymer, poly(carbonate) (PC), under both isobaric and isochoric (constant volume) conditions. An isochoric glass transition was observed and the formation points were found to be consistent with those obtained isobarically. Although the isobaric and isochoric responses were, as expected, the same in the rubbery state, the glassy state values were found to be different and dependent upon the glass formation history. The isobaric data exhibited larger changes in going from the rubber to the glass, hence a “stronger” glass transition, than did the isochoric data. Inserting the experimental values for the thermal expansion coefficient α and isothermal compressibility β, into appropriate thermodynamic relations, measures of the strength of each transition are defined. Strength estimates based on literature values of α and β are compared to the experimental measures of the isochoric and isobaric transitions. In addition, both the isobaric and isochoric PVT results were analyzed in terms of the Fox and Flory free volume theory which assumes that the glass transition is an iso-free volume state. While the isobaric results were consistent with the Fox and Flory theory, the isochoric results were not consistent with the idea of an iso-free volume glass transition. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 35: 1561-1573, 1997
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 35 (1997), S. 1167-1174 
    ISSN: 0887-6266
    Keywords: creep compliance ; physical aging ; rubber-toughened epoxies ; stress relaxation ; superposition ; two-phase materials ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: -From time-aging time superposition principles, similar to time-temperature superposition, one would expect similar shifting or superposition behaviors for both creep and stress relaxation responses. In particular, for isotropic homogeneous systems, in the linear viscoelastic regime, consideration of superposition in rheology by Markowitz1 or the discussion by Ferry2 from the Kramers-Kronig relation would seem to demand that creep and stress relaxation shift in the same way. Here we report on results from creep and stress relaxation measurements in two-phase, rubber-toughened epoxies that exhibit Boltzman additivity of creep or relaxation behaviors and follow the time-aging time superposition behavior in creep, but not in stress relaxation. While the lack of superposition in stress relaxation is, perhaps, not surprising, the finding that the creep responses at different aging times superimpose while the stress relaxation responses do not, presents an anomalous behavior that has not been previously reported. In addition, our findings show that the stress relaxation responses show short time “softening” upon aging. Possible reasons for the anomalous behaviors are briefly considered. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 35: 1167-1174, 1997
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...