Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Frame-shifted amyloid precursor protein (APP+1), which has a truncated out-of-frame C-terminus, accumulates in the neuropathological hallmarks of patients with Alzheimer's disease pathology. To study a possible involvement of APP+1 in the pathogenesis of Alzheimer's disease, we expressed APP695 and APP+1 in the HEK293 cell-line and studied whether the processing of APP695 was affected. APP+1 is a secretory protein, but high expression of APP695 and APP+1 results in the formation of intracellular aggregate-like structures containing both proteins and Fe65, an adaptor protein that interacts with APP695. APP+1 is shown to interact with APP695, suggesting that these structures consist of functional protein complexes. Such an interaction can also be anticipated in post-mortem brains of young Down's syndrome patients without any sign of neuropathology. Here we observed APP+1 immunoreactivity in beaded fibres. Additional support for functional consequences on the processing of APP695 comes from a 1.4-fold increase in levels of secreted amyloid β40 in cells co-expressing APP695 and APP+1, although APP+1 itself does not contain the amyloid β sequence. Taken together, these data show that co-expression of APP695 and APP+1 affects the processing of APP695 in a pro-amyloidogenic way and this could gradually contribute to Alzheimer's disease pathology, as has been implicated in Down's syndrome patients.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1365-2826
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Opioid peptides are present in nerve terminals in the rat neural lobe where they partially coexist with vasopressin. Morphological findings suggest that these neuropeptides are released onto pituicytes, which is in agreement with a possible role for the pituicyte in oxytocin and vasopressin release from the neural lobe.Pituicytes in culture respond to vasopressin with a mobilization of calcium from intracellular stores. In the present study this vasopressin induced increase in intracellular free calcium levels was both delayed and decreased by pre-exposure to dynorphin 1–17, while dynorphin 1–17 by itself did not affect basal calcium levels. All effects of dynorphin 1–17 could be blocked with naloxone. The present results suggest that opioid receptors are present on pituicytes and are coupled to a second messenger pathway by which opioid peptides may inhibit inositol phosphate dependent calcium mobilization by other neuropeptides, such as vasopressin.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1365-2826
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Previous studies have suggested an involvement of enkephalins in regulation of oxytocin (OXT) and vasopressin (AVP) release, which seems to disagree with the very low affinities of Met- and Leu-enkephalin for the kappa opioid receptor. As opioid receptors in the neural lobe exclusively exist of kappa receptors, we studied the binding characteristics of larger pro-enkephalin derived peptides for opioid binding sites in the neural lobe by means of light microscopic receptor autoradiography. In addition, the pharmacological characteristics of opioid binding sites in the neural lobe were compared with those in other parts of the pituitary.In the neural as well as the intermediate lobe both high and low affinity 3H-bremazocine binding sites were present. Binding to these sites was completely displaceable by both naloxone and nor-binaltorphimine, suggesting that these sites represent kappa opioid receptors. Also with regard to selectivity and affinity characteristics to other ligands, opioid binding sites in the neural and intermediate lobe were quite similar. In the anterior lobe a very low level of bremazocine binding was present, which could not be displaced by nor-binaltorphimine.Displacement studies with pro-enkephalin and pro-dynorphin derived peptides showed that both groups of peptides could bind to opioid binding sites in the neural and intermediate lobe. Especially the relatively large pro-dynorphin and pro-enkephalin derived peptides, such as dynorphin 1–17 and BAM22, appeared to be very potent ligands for these opioid binding sites and were much more potent than smaller fragments, such as dynorphin 1–8, and Met- and Leu-enkephalin. These results contradict the existence of a mismatch in the neural (and intermediate) lobe with regard to the local type of opioid peptides and receptors present.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1460-9568
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Chronic blockade of bioelectric activity (BEA) has been shown to increase neuronal cell death in tissue culture, but the effects of this treatment on non-neuronal cells have not been investigated. To determine which cell types are affected by chronic suppression of BEA, we investigated their morphological development in primary cultures of rat cerebral cortex, grown with or without the sodium channel blocker tetrodotoxin (TTX). Morphological development was monitored by phase-contrast microscopy and by immunofluorescent staining of markers specific for neurons (NSE, MAP2, B-50, and the 200 kD neurofilament protein), astrocytes (GFAP), oligodendrocytes (galactocerebroside), macrophages (ED-1) and fibroblasts (fibronectin). Neurons in control cultures steadily increased in size and elaborated a dense network of axons and dendrites during the first 3 weeks. Astrocytes proliferated strongly and formed a ‘bottom-layer’ on which other cells grew. Part of the astrocytes migrated into the peripheral area of the culture, but retracted to the centre after 14 days in vitro (DIV). Oligodendrocytes and macrophages also increased in number, but oligodendrocytes were completely lost by 28 DIV. After 3 weeks, axons that had grown into the periphery of the culture gradually retracted and/or degenerated, following the retracting astrocytes. Some of the neurons died after 21 DIV, but a large part persisted until 42 DIV. Upon TTX treatment from 5/6 DIV, cultures with few macrophages showed an increase in the proportion of necrotic nuclei at 14 and 21 DIV. The retraction of peripherally located fibres was accelerated by 3–4 days and their degeneration was augmented. Neuronal density decreased to zero between 21 and 42 DIV. Astrocytes showed a clear decrease in density from 28 DIV. Conversely, the density of macrophages was increased about two-fold from 14 DIV. These results indicate that both neurons and glia are affected by chronic TTX treatment.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Annals of the New York Academy of Sciences 689 (1993), S. 0 
    ISSN: 1749-6632
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Natural Sciences in General
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Experimental brain research 48 (1982), S. 288-295 
    ISSN: 1432-1106
    Keywords: Enkephalin ; Immunocytochemistry ; Hippocampus ; Fascia dentata ; Guinea pig
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The distribution of enkephalin immunoreactive fibres has been studied in the hippocampus, subiculum and entorhinal cortex of the guinea pig. Two immunoreactive enkephalin fibre systems were found. One system corresponds to the mossy fibre system from the fascia dentata to CA3 and courses at the level of the mossy fibre end bulb in a longitudinal direction along the main axis of the hippocampus. Another system originates in the medial and lateral entorhinal cortex, traverses the subiculum, and then courses in the stratum molecu-lare/lacunosum to CA1 and CA3; part of these fibres crosses the hippocampal fissure and reaches the stratum moleculare of the fascia dentata. In the fascia dentata intense immunoreactivity was observed in the distal and middle one-third of the stratum moleculare at the side of the terminations of the lateral and medial perforant path fibres. Various types of immunoreactive cell bodies were found in the fascia dentata, CA3, CA1, subiculum and in the entorhinal cortex.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1432-0878
    Keywords: Immunocytochemistry ; Vasopressin ; Oxytocin ; Somatostatin ; Luteining hormone releasing hormone
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary The hypothalamic hormones arginine-vasopressin (AVP), oxytocin (OXT), somatostatin (SOM), and luteinizing hormone-releasing hormone (LHRH) were localized in the rat neurohypophysis by the use of semithin serial sections and the unlabeled antibody enzyme method. Clusters of AVP fibres are present within the central region of the neural lobe, clusters of OXT fibres mainly in the peripheral part. The AVP fibres enter bilaterally into the neural lobe. The results call into question previous reports on the presence of AVP on receptors in the pars intermedia cells, since incubation with anti-AVP resulted in similar staining in the pars intermedia of the Wistar and homozygous Brattleboro rat, a mutant strain deficient in AVP. The same intermediate lobe cells are stained after incubation of serial sections with anti-AVP and anti-α-melanocyte-stimulating hormone (α-MSH). This staining of anti-AVP could be removed by solid phase absorption to α-MSH and is thus most probably due to cross reaction with α-MSH. SOM fibres appear to be present in the peripheral parts of the proximal neurohypophysial stalk and mainly lateral in its more distal parts. In the neural lobe they rapidly decrease in number, although some fibres continue into the distal part of the neural lobe, running bilaterally and situated adjacent to the pars intermedia. The SOM staining within magnocellular elements, which has been reported in the literature, can most probably be explained by cross reaction of anti-SOM with neurophysins. LHRH fibres are very scarce in the neurohypophysial stalk and absent in the neural lobe.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1432-0878
    Keywords: Immunocytochemistry ; Vasopressin ; Dorsomedial hypothalamus ; Amygdala ; Locus coeruleus
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary Recently, the existence of a vasopressin-immunoreactive cell group was described in the bed nucleus of the stria terminalis (van Leeuwen and Caffé 1983). In the present investigation additional nuclei containing vasopressin-immunoreactive cells were found, after colchicine pretreatment, in the dorsomedial hypothalamus, medial amygdaloid nucleus and the locus coeruleus. Vasopressin-immunoreactive cells in the dorsomedial hypothalamus and medial amygdaloid nucleus are small (8–14 μm and 10–14 μm, respectively), while those in the locus coeruleus are medium-sized (20–25 μm). Incubation with anti-bovine neurophysin II and anti-rat neurophysin revealed staining of the same cell group in the above-mentioned areas. None of these cell groups show stained cells after incubation with anti-oxytocin and anti-bovine neurophysin I. When sections of the homozygous Brattleboro rat, which shows a deficiency in vasopressin synthesis, are incubated with anti-vasopressin, anti-bovine neurophysin II, or anti-rat neurophysin, no immunoreactivity can be observed in these brain regions. The above-mentioned cell groups may contribute to the vasopressinergic innervation of brain sites that have been reported to persist after lesioning of the suprachiasmatic, paraventricular and bed nuclei of the stria terminalis.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Springer
    Cell & tissue research 177 (1977), S. 493-501 
    ISSN: 1432-0878
    Keywords: Vasopressin ; Oxytocin ; Neurohypophysis ; Specificity ; Immunoelectronmicroscopy
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary An immunoelectronmicroscopic method for the specific localization of neurohypophyseal hormones was developed in neurohypophyses of Wistar and Brattleboro rats, the latter strain being homozygous for diabetes insipidus. If the proper precautions were omitted, a marked cross reactivity between antivasopressin and antioxytocin preparations was found. Cross reaction of an antivasopressin plasma with oxytocin, at a dilution of less than 1∶1600, resulted in electron density of all granules within neurosecretory fibres of the Brattleboro and Wistar neurohypophyses. However, this cross reactivity could be eliminated either by sufficient dilution of the antiplasma, or by its purification. Purification of the antibodies was performed by absorption to agarose beads coated with the cross reacting component. Upon incubation with antivasopressin (diluted unpurified 1∶1600 or purified 1∶80) and unpurified antioxytocin (1∶400) plasma, sections of a Wistar neurohypophysis revealed two types of neurosecretory fibres, containing either electron dense or lucent granules. Oxytocin and vasopressin containing neurosecretory fibres were found as clusters in the neurohypophysis. The specificity of both unpurified antivasopressin (1∶1600) and antioxytocin (1∶400) plasma was confirmed on serial sections of a Wistar neurohypophysis, alternately incubated with the solutions of the two antibodies. These data prove that the one-cell-one-hormone hypothesis holds true for the hypothalamic-neurohypophyseal system.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Springer
    Cell & tissue research 193 (1978), S. 1-10 
    ISSN: 1432-0878
    Keywords: Hypothalamus ; Suprachiasmatic nucleus ; Supraoptic nucleus ; Vasopressin ; Immunoelectron microscopy
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Summary The classical areas for arginine-vasopressin (AVP) synthesis are the magnocellular supraoptic (SON) and paraventricular nuclei. More recently AVP was also demonstrated in neurons of the parvocellular suprachiasmatic nucleus (SCN) of the rat. This result was substantiated in the present study by means of immunoelectron microscopy, by subjecting sections to antivasopressin plasma. Conventional electron microscopy revealed dense-core vesicles in the SCN cell bodies and fibres (mean diameter 94.7±0.9 nm and 84.0±1.1 nm respectively). These vesicles were infrequent within the cell bodies and could not be accumulated by ethanol administration. Immunoelectron microscopy showed a positive reaction in the cell bodies and fibres within vesicles of 93.7±1.1 nm and 98.5±1.2 nm respectively. By comparison, the cell bodies and fibres of the SON showed immunoreactive granules of 143.0±1.8 and 147.3±1.8 nm respectively. The presence in the SCN of AVP in vesicles of different size than those in the SON suggests that synthesis of this substance is indeed occurring within the SCN cells.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...