Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Soil use and management 13 (1997), S. 0 
    ISSN: 1475-2743
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract. Soils in areas with high livestock density contribute to the eutrophication of aquatic ecosystems through loss of nutrients, especially phosphorus (P). In order to identify the potential for P loss from such soils we determined phosphorus extracted by water (H2O-P), by double lactate (DL-P), and P sorption capacity (PSC) and degree of P saturation (DPS) in soil samples from two counties, one with low (Harle-catchment) and the other with very high livestock density (Vechta). Both catchments are hydrologically connected with the tidal areas of the North Sea.The mean concentrations of H2O-P (0.4mmol/kg) and DL-P (3.9 mmol/kg) were lower in the Harle-catchment than in the Vechta area (1.2 mmol/kg, 6.8mmol/kg). Although oxalate-extractable Al (Alox) and Fe (Feox) and the derived PSCs varied according to soil type and to land use, the livestock density and the resulting high concentrations of oxalate-extractable P (Pox) were shown to be the main reason for the very high DPS of up to 179% in the county of Vechta. These values exceeded DPS reported from other intensive pig feeding areas in western Europe and indicate the potential for significant P loss. Less than 40% of the variation in Pox could be explained by the routinely determined H2O-Por DL-P. Geostatistical analyses indicated that the spatial variability of Pox depended on manurial history of fields and Alox, showed still smaller-scale variability. These were the major constraints for regional assessments of P losses and eutrophication risk from agricultural soils using available soil P-test values, digital maps and geostatistical methods.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Journal of Analytical and Applied Pyrolysis 25 (1993), S. 123-136 
    ISSN: 0165-2370
    Keywords: Dynamics ; pyrolysis ; pyrolysis-field ionization mass spectrometry ; soil organic matter.
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Thermochimica Acta 200 (1992), S. 151-167 
    ISSN: 0040-6031
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 0040-6031
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Oxford, UK; Malden, USA : Blackwell Publishing Ltd/Inc.
    European journal of soil science 55 (2004), S. 0 
    ISSN: 1365-2389
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Fatty acids, the most abundant class of soil lipids, indicate pedogenetic processes and soil management. However, their quantitative distribution in organo-mineral particle-size fractions is unknown. The concentrations of n-C10:0 to n-C34:0 fatty acids both in whole soil samples and in the organo-mineral particle-size fractions of the Ap horizon of a Chernozem were determined (i) to evaluate the effects of long-term fertilization and (ii) to investigate their influence on the aggregation of organo-mineral primary particles. Quantification by gas chromatography/mass spectrometry (GC/MS) showed that long-term fertilization with nitrogen, phosphorus and potassium (NPK) and farmyard manure (FYM) led to larger concentrations (25.8 µg g−1) of fatty acids than in the unfertilized sample (22.0 µg g−1). For particle-size fractions of the unfertilized soil, the fatty acid concentrations increased from the coarse silt to the clay fractions (except for fine silt). Fertilization with NPK and FYM resulted in absolute enrichments of n-C21:0 to n-C34:0 fatty acids with a maximum at n-C28:0 in clay (×2.2), medium silt (×2.0), coarse silt (×1.8) and sand (×2.9) compared with the unfertilized treatment (the factors of enrichment are given in parentheses). New evidence for the aggregate stabilizing function of n-C21:0 to n-C34:0 fatty acids was shown by the characteristic pattern in size-fractionated, disaggregated and aggregated samples. Highly significant correlations of fatty acid concentrations with organic C concentrations and specific surface areas are interpreted as indicators of (i) trapping of fatty acids in organic matter macromolecules and (ii) direct bonding to mineral surfaces. This interpretation was supported by the thermal volatilization and determination of fatty acids by pyrolysis-field ionization mass spectrometry (Py-FIMS).
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    European journal of soil science 50 (1999), S. 0 
    ISSN: 1365-2389
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: We should know the effects of soil use and management on the contents and forms of soil phosphorus (P) and the resulting potential for leaching losses of P to prevent eutrophication of surface water. We determined P test values, amounts of sequentially extracted forms of P, P sorption capacities and degrees of P saturation in 20 differently treated soils and compared these data with leaching losses in lysimeters. One-way analyses of variance indicated that most fractions of P were significantly influenced by soil texture, land use (grassland, arable or fallow or reafforestation), mineral fertilization and intensity of soil management. Generally, sandy soils under grass and given large amounts of P fertilizer contained the most labile P and showed the largest P test values. Fallow and reafforestation led to smallest labile P fractions and relative increases of P extractable by H2SO4 and residual P. Arable soils with organic and mineral P fertilization given to crop rotations had the largest amounts of total P, labile P fractions and P test values. The mean annual concentrations of P in the lysimeter leachates varied from 0 to 0.81 mg l–1 (mean 0.16 mg l–1) and the corresponding leaching losses of P from 〈 0.01 to 3.2 kg ha–1 year–1 (mean 0.3 kg P ha–1 year–1). These two sets of data were correlated and a significant exponential function (R2 = 0.676) described this relation. Different soil textures, land uses and management practices resulted in similar values for P leaching losses as those for the amounts of labile P fractions. Surprisingly, larger rates of mineral P fertilizer did not necessarily result in greater leaching losses. The contents of P extracted by NaHCO3 and acid oxalate and the degrees of P saturation were positively correlated with the concentrations of P in leachates and leaching losses. As the P sorption capacity and degree of P saturation predicted leaching losses of P better than did routinely determined soil P tests, they possibly can be developed as novel P tests that meet the requirements of plant nutrition and of water protection.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    European journal of soil science 50 (1999), S. 0 
    ISSN: 1365-2389
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    European journal of soil science 47 (1996), S. 0 
    ISSN: 1365-2389
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: The composition of soil organic matter (SOM) on sewage farms south of Berlin was investigated by solid-state CP/MAS 13C-NMR and pyrolysis-field ionization mass spectrometry (Py-FIMS) of freeze-dried sewage solids and soil samples of differing contamination. These were an untreated soil (USOIL), a former sewage farm used as arable land since 1990 (SF90A), and a recent sewage farm (SF1994). The CP/MAS 13C-NMR spectra showed enrichments of the sewage-treated soils with aliphatic C and C in OCH3-groups and amino acids. In the Py-FI mass spectra the major markers of sewage and SOM in sewage farm soils were (i) N-containing compounds, in particular peptides, (ii) dimethylphthalate (m/z 194), (iii) sterols, and (iv) signals in the mass range m/z 502 to 554 of mono- and diaryl esters which were substituted by long aliphatic chains. The latter signals were intense in the sewage solids, increased in intensity from sample SF90A to SF1994; but they were not present in the USOIL, thus clearly indicating anthropogenic origin. Temperature-resolved Py-FIMS showed that the SOM compounds in the sewage farm soils were generally incorporated into bonds with widely different stabilities which could be relevant for SOM turnover and environmental effects. This is demonstrated for the trapping of dimethylphthalate in a modelled humic substance.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    European journal of soil science 50 (1999), S. 0 
    ISSN: 1365-2389
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Heavy density fractions of soil contain organic matter tightly bound to the surface of soil minerals. The chemical composition and ecological meaning of non-metabolic decomposition products and microbial metabolites in organic–mineral bonds is poorly understood. Therefore, we investigated the heavy fraction (density 〉 2 g cm–3) from the topsoil of a Gleysol (Bainsville, Ottawa, Canada). It accounted for 952 g kg–1 of soil and contained 19 g kg–1 of organic C. Pyrolysis-field ionization mass spectra showed intensive signals of carbohydrates, and phenols and lignin monomers, alkylaromatics (mostly aromatic) N-containing compounds, and peptides. These classes of compound have been proposed as structural building blocks of soil organic matter. In comparison, the light fraction (density 〉 2 g cm–3) was richer in lignin dimers, lipids, sterols, suberin and fatty acids which clearly indicate residues of plants and biota. To confirm the composition and stability of mineral-bound organic matter, we also investigated the heavy fraction (density 〉 2.2 g cm–3) from clay-, silt- and sand-sized separates of the topsoil of a Chernozem (Bad Lauchstädt, Germany). These heavy size separates differed in their mass spectra but were generally characterized by volatilization maxima of alkylaromatics, lipids and sterols at about 500°C. We think that the observed high-temperature volatilization of these structural building blocks of soil organic matter is indicative of the organic–mineral bonds. Some unexpected low-temperature volatilization of carbohydrates, N-containing compounds, peptides, and phenols and lignin monomers was assigned to hot-water-extractable organic matter which accounted for 7–27% of the carbon and nitrogen in the heavy fractions. As this material is known to be mineralizable, our study indicates that these constituents of the heavy density fractions are degradable by micro-organisms and involved in the turnover of soil organic matter.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 20 (1995), S. 17-23 
    ISSN: 1432-0789
    Keywords: Soil organic matter ; Hot water extract ; Field experiment ; Soil biomass ; Temporal variations ; Soil fertility ; NMR ; Analytical pyrolysis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Hot water-soluble organic matter was extracted from soil samples collected weekly between April and October in untreated and NPK+farmyard manure-fertilized plots in the 88-year-old Static Experiment (Loess Chernozem) at Bad Lauchstädt, Germany. As shown by solid-state 13C-nuclear magnetic resonance spectroscopy (13C-NMR) combined with pyrolysis-field ionization mass spectrometry this organic matter fraction was largely composed of carbohydrates and N-containing compounds, in particular amino-N species and amides. This composition and the low pyrolysis temperatures (mainly between 300 and 500°C) indicated its origin from soil biomass and root exudates and lysates, and its presence in the soil solution or weakly adsorbed by soil minerals and humic macromolecules. Long-term fertilization with NPK+farmyard manure resulted in larger mean concentrations of hot water-extracted C and N (0.933 and 0.094 g kg-1) than soil management without fertilization (0.511 and 0.056 g kg-1). The C and N extracted by hot water were in the range of 3–5% of total soil C and N. In the two treatments distinct temporal changes were observed, which appeared to be related to population dynamics of soil organisms, root growth and decomposition, and climatic influences on soil.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...