Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: In Saccharomyces cerevisiae, glucose activation of cAMP synthesis requires both the presence of the G-protein-coupled receptor (GPCR) system, Gpr1-Gpa2, and uptake and phosphorylation of the sugar. In a hxt-null strain that lacks all physiologically important glucose carriers, glucose transport as well as glucose-induced cAMP signalling can be restored by constitutive expression of the galactose permease. Hence, the glucose transporters do not seem to have a regulatory function but are only required for glucose uptake. We established a system in which the GPCR-dependent glucose-sensing process is separated from the glucose phosphorylation process. It is based on the specific transport and hydrolysis of maltose providing intracellular glucose in the absence of glucose transport. Preaddition of a low concentration (0.7 mM) of maltose to derepressed hxt-null cells and subsequent addition of glucose restored the glucose-induced cAMP signalling, although there was no glucose uptake. Addition of a low concentration of maltose itself does not increase the cAMP level but enhances Glu6P and apparently fulfils the intracellular glucose phosphorylation requirement for activation of the cAMP pathway by extracellular glucose. This system enabled us to analyse the affinity and specificity of the GPCR system for fermentable sugars. Gpr1 displayed a very low affinity for glucose (apparent Ka = 75 mM) and responded specifically to extracellular α and βd-glucose and sucrose, but not to fructose, mannose or any glucose analogues tested. The presence of the constitutively active Gpa2val132 allele in a wild-type strain bypassed the requirement for Gpr1 and increased the low cAMP signal induced by fructose and by low glucose up to the same intensity as the high glucose signal. Therefore, the low cAMP increases observed with fructose and low glucose in wild-type cells result only from the low sensitivity of the Gpr1-Gpa2 system and not from the intracellular sugar kinase-dependent process. In conclusion, we have shown that the two essential requirements for glucose-induced activation of cAMP synthesis can be fulfilled separately: an extracellular glucose detection process dependent on Gpr1 and an intracellular sugar-sensing process requiring the hexose kinases.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: In the yeast Saccharomyces cerevisiae the accumulation of cAMP is controlled by an elaborate pathway. Only two triggers of the Ras adenylate cyclase pathway are known. Intracellular acidification induces a Ras-mediated long-lasting cAMP increase. Addition of glucose to cells grown on a non-fermentable carbon source or to stationary-phase cells triggers a transient burst in the intracellular cAMP level. This glucose-induced cAMP signal is dependent on the G alpha-protein Gpa2. We show that the G-protein coupled receptor (GPCR) Gpr1 interacts with Gpa2 and is required for stimulation of cAMP synthesis by glucose. Gpr1 displays sequence homology to GPCRs of higher organisms. The absence of Gpr1 is rescued by the constitutively activated Gpa2Val-132 allele. In addition, we isolated a mutant allele of GPR1, named fil2, in a screen for mutants deficient in glucose-induced loss of heat resistance, which is consistent with its lack of glucose-induced cAMP activation. Apparently, Gpr1 together with Gpa2 constitute a glucose-sensing system for activation of the cAMP pathway. Deletion of Gpr1 and/or Gpa2 affected cAPK-controlled features (levels of trehalose, glycogen, heat resistance, expression of STRE-controlled genes and ribosomal protein genes) specifically during the transition to growth on glucose. Hence, an alternative glucose-sensing system must signal glucose availability for the Sch9-dependent pathway during growth on glucose. This appears to be the first example of a GPCR system activated by a nutrient in eukaryotic cells. Hence, a subfamily of GPCRs might be involved in nutrient sensing.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...