Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    s.l. ; Stafa-Zurich, Switzerland
    Materials science forum Vol. 475-479 (Jan. 2005), p. 4109-4112 
    ISSN: 1662-9752
    Source: Scientific.Net: Materials Science & Technology / Trans Tech Publications Archiv 1984-2008
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Nanoindentation technique was applied to evaluate nanohardness distribution in a submicron scale for two kinds of martensitic steels: Fe-0.4C binary steel and Fe-0.05C-0.22Ti steel with a stoichiometric composition of TiC. AFM images showed that Fe-C steel includes relatively coarse cementite particles with about 100~200 nm in diameter and a couple of hundreds nanometer in average spacing, while high-resolution TEM observation showed that the Fe-C-Ti steel has fine TiC precipitates with 5 nm in diameter and 15 nm for average spacing. Nanoindentation resultsrevealed that the standard deviation was much higher for the Fe-C than that for the Fe-C-Ti. Since the typical indent size was a couple of hundreds nanometer, which was about two orders larger than the size of the TiC and comparable to the cementite size, the small distribution of nanohardness of the Fe-C-Ti was attributed to the homogeneous microstructure in sub-micron scale, while the inhomogeneity of cementite particles in the Fe-C steel leaded to large nanohardness
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...