Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Journal of oceanography 41 (1985), S. 291-298 
    ISSN: 1573-868X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract Wintertime temperature-salinity properties of the southeastern Hwanghae (Yellow Sea) were analysed, based on long-term hydrographic data gathered between 1961 and 1980. A strong thermohaline front is formed in the area west of Cheju-do (along 33
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Journal of oceanography 55 (1999), S. 257-270 
    ISSN: 1573-868X
    Keywords: Surface heat flux ; net heat flux ; Yellow Sea ; East/Japan Sea ; East China Sea ; monthly and annual means
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract Based on the twice-daily marine atmospheric variables which were derived mostly from the weather maps for 18 years period from 1978 to 1995, the surface heat flux over the East Asian marginal seas was calculated at 0.5°×0.5° grid points twice a day. The annual mean distribution of the net heat flux shows that the maximum heat loss occurs in the central part of the Yellow Sea, along the Kuroshio axis and along the west coast of the northern Japanese islands. The area off Vladivostok turned out to be a heat-losing region, however, on the average, the amount of heat loss is minimum over the study area and the estuary of the Yangtze River also appears as a region of the minimum heat loss. The seasonal variations of heat flux show that the period of heat gain is longest in the Yellow Sea, and the maximum heat gain occurs in June. The maximum heat loss occurs in January over the study area, except the Yellow Sea where the heat loss is maximum in December. The annual mean value of the net heat flux in the East/Japan Sea is −108 W/m2 which is about twice the value of Hirose et al. (1996) or about 30% higher than Kato and Asai (1983). For the Yellow Sea, it is about −89 W/m2 and it becomes −75 W/m2 in the East China Sea. This increase in values of the net heat flux comes mostly from the turbulent fluxes which are strongly dependent on the wind speed, which fluctuates largely during the winter season.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Journal of oceanography 56 (2000), S. 197-211 
    ISSN: 1573-868X
    Keywords: Cheju Warm Current ; Tsushima Warm Current ; CTD data ; satellite-tracked drifters ; Cheju-do ; East China Sea
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract The Cheju Warm Current has been defined as a mean current that rounds Cheju-do clockwise, transporting warm and saline water to the western coastal area of Cheju-do and into the Cheju Strait in the northern East China Sea (Lie et al., 1998). Seasonal variation of the Cheju Warm Current and its relevant hydrographic structures were examined by analyzing CTD data and trajectories of satellite-tracked drifters. Analysis of a combined data set of CTD and drifters confirms the year-round existence of the Cheju Warm Current west of Cheju-do and in the Cheju Strait, with current speeds of 5 to 40 cm/s. Saline waters transported by the Cheju Warm Current are classified Cheju Warm Current water for water of salinity greater than 34.0 psu and modified Cheju Warm Current for water having salinity of 33.5–34.0 psu. In winter, Cheju Warm Current water appears in a relatively large area west of Cheju-do, bounded by a strong thermohaline front formed in a "Γ" shape. In summer and autumn, the Cheju Warm Current water appears only in the lower layer, retreating to the western coastal area of Cheju-do in summer and to the eastern coastal area sometimes in autumn. The Cheju Warm Current is found to flow in the western channel of the Korea/Tsushima Strait after passing through the Cheju Strait, contributing significantly to the Tsushima Warm Current.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...