Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Annals of the New York Academy of Sciences 448 (1985), S. 0 
    ISSN: 1749-6632
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Natural Sciences in General
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Naunyn-Schmiedeberg's archives of pharmacology 338 (1988), S. 162-168 
    ISSN: 1432-1912
    Keywords: Antipsychotics ; Caudate-putamen ; Dihydroxyphenylacetic acid ; Nigrostriatal ; Haloperidol ; Clozapine ; Neuroleptics ; 3-Methoxytryramine ; Dopamine release
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Summary The release and metabolism of dopamine in the mouse caudate-putamen were determined after the oral administration of antipsychotic drugs at doses equal to or sixfold greater than the ED50 dose for their inhibition of apomorphine-induced climbing. Dopamine release was equated with concentrations of 3-methoxytyramine (3-MT) and metabolism was equated with concentrations of dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) levels. Like the D-1 antagonists SCH 23390 and SKF 83566, most antipsychotic agents with an atypical preclinical profile suggestive of low extrapyramidal symptomatology (CGS 10746B, flumezapine, CL 77328, rimcazole, clozapine, RMI 81582, and fluperlapine) never increased dopamine release and produced variable increases in dopamine metabolism. Other atypical antipsychotics (thioridazine, mesoridazine, melperone) increased dopamine release at only one dose tested but increased dopamine metabolism at most doses. Antipsychotic agents associated with extrapyramidal side effects (setoperone, perlapine, haloperidol, chlorpromazine, and metoclopramide) increased dopamine release and metabolism at almost every dose tested. Thus, atypical antipsychotics increase the metabolism but not release of dopamine at behaviorally effective doses. The resemblance of these minimal effects on dopamine release to those obtained with D-1 antagonists that also have an atypical preclinical profile suggests that a mechanism related to D-1 receptor antagonism may contribute to the action of atypical antipsychotics.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-2072
    Keywords: Rotational behavior ; 8-OH-DPAT ; RU 24969 ; Serotonin ; Dopamine ; Raphe ; 6-Hydroxydopamine ; Denervation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine
    Notes: Abstract Rats with unilateral 6-hydroxydopamine (6-OHDA)-induced lesions of the ascending nigro-striatal pathway have been shown to rotate in response to dopamine (DA) agonists that are not considered to have postsynaptic DA stimulant properties in intact animals, suggesting a relative loss of DA receptor selectivity in the denervated striatum. The present experiments assessed the possibility that this loss of selectivity may extend to serotonin (5HT) agonist drugs. The 5HT-1a agonist 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT), at doses of 0.3–3 mg/kg SC, induced robust contralateral rotational behavior (RB) in 6-OHDA-lesioned rats that had been preselected on the basis of high responsiveness to the atypical DA agonists 3-PPP and SKF 38393. Rats with unilateral dorsal raphe lesions induced by 5,7-dihydroxytryptamine (5,7-DHT) showed contralateral RB in response to similar doses of 8-OH-DPAT but with a different behavioral pattern. The putative 5HT-1b agonist RU 24969 produced contralateral RB in 5,7-DHT-lesioned rats while showing a much weaker effect in 6-OHDA-lesioned rats. Striatal DA levels were depleted by 99% in representative 6-OHDA-lesioned rats but striatal 5HT levels were unaffected. The effects of 8-OH-DPAT in 6-OHDA-lesioned rats were therefore not attributable to destruction of ascending 5HT-containing neurons. These effects may result from indirect actions, mediated by 5-HT neurons or neuronal receptors, that result from asymmetry of brain DA systems. Alternatively, it is proposed that rats with highly denervated striatal DA receptors show a loss of apparent molecular selectivity such that weak partial DA agonist properties of 8-OH-DPAT, although not demonstrable in normal rats, become manifested under these conditions.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...