Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1546-1718
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Medicine
    Notes: [Auszug] Metastasis is the process by which cancers spread to distinct sites in the body. It is the principal cause of death in individuals suffering from cancer. For some types of cancer, early detection of metastasis at lymph nodes close to the site of the primary tumor is pivotal for appropriate ...
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 26 (1996), S. 192-203 
    ISSN: 0887-3585
    Keywords: molecular recognition ; myoglobin ; Leu ; Ile ; Val binding protein ; lipase ; lysozyme ; azurin ; triose phosphate isomerase ; carbonic anhydrase ; phosphoglycerate kinase ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: A method for the detection of hydrophobic patches on the surfaces of protein tertiary structures is presented. It delineates explicit contiguous pieces of surface of arbitrary size and shape that consist solely of carbon and sulphur atoms using a dot representation of the solvent-accessible surface. The technique is also useful in detecting surface segments with other characteristics, such as polar patches. Its potential as a tool in the study of protein-protein interactions and substrate recognition is demonstrated by applying the method to myoglobin, Leu/Ile/Val-binding protein, lipase, lysozyme, azurin, triose phosphate isomerase, carbonic anhydrase, and phosphoglycerate kinase. Only the largest patches, having sizes exceeding random expectation, are deemed meaningful. In addition to well-known hydrophobic patches on these proteins, a number of other patches are found, and their significance is discussed. The method is simple, fast, and robust. The program text is obtainable by anonymous ftp. © 1996 Wiley-Liss, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 25 (1996), S. 389-397 
    ISSN: 0887-3585
    Keywords: molecular recognition ; molecular surface ; lipophilicity ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: A survey of hydrophobic patches on the surface of 112 soluble, monomeric proteins is presented. The largest patch on each individual protein averages around 400 Å2 but can range from 200 to 1,200 Å2. These areas are not correlated to the sizes of the proteins and only weakly to their apolar surface fraction. Ala, Lys, and Pro have dominating contributions to the apolar surface for smaller patches, while those of the hydrophobic amino acids become more important as the patch size Increases. The hydrophilic amino acids expose an approximately constant fraction of their apolar area independent of patch size; the hydrophobic residue types reach similar exposure only in the larger patches. Though the mobility of residues on the surface is generally higher, it decreases for hydrophilic residues with Increasing patch size. Several characteristics of hydrophobic patches catalogued here should prove useful in the design and engineering of proteins. © 1996 Wiley-Liss, Inc.
    Additional Material: 12 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Proteins: Structure, Function, and Genetics 28 (1997), S. 333-343 
    ISSN: 0887-3585
    Keywords: protein structure ; oligomeric structure ; subunit interface ; molecular recognition ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine
    Notes: Hydrophobic patches, defined as clusters of neighboring apolar atoms deemed accessible on a given protein surface, have been investigated on protein subunit interfaces. The data were taken from known tertiary structures of multimeric protein complexes. Amino acid composition and preference, patch size distribution, and patch contact complementarity across associating subunits were examined and compared with hydrophobic patches found on the solvent-accessible surface of the multimeric complexes. The largest or second largest patch on the accessible surface of the entire subunit was involved in multimeric interfaces in 90% of the cases. These results should prove useful for subunit design and engineering as well as for prediction of subunit interface regions. Proteins 28:333-343, 1997. © 1997 Wiley-Liss, Inc.
    Additional Material: 14 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 0192-8651
    Keywords: Computational Chemistry and Molecular Modeling ; Biochemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: The double cubic lattice method (DCLM) is an accurate and rapid approach for computing numerically molecular surface areas (such as the solvent accessible or van der Waals surface) and the volume and compactness of molecular assemblies and for generating dot surfaces. The algorithm has no special memory requirements and can be easily implemented. The computation speed is extremely high, making interactive calculation of surfaces, volumes, and dot surfaces for systems of 1000 and more atoms possible on single-processor workstations. The algorithm can be easily parallelized. The DCLM is an algorithmic variant of the approach proposed by Shrake and Rupley (J. Mol. Biol., 79, 351-371, 1973). However, the application of two cubic lattices - one for grouping neighboring atomic centers and the other for grouping neighboring surface dots of an atom - results in a drastic reduction of central processing unit (CPU) time consumption by avoiding redundant distance checks. This is most noticeable for compact conformations. For instance, the calculation of the solvent accessible surface area of the crystal conformation of bovine pancreatic trypsin inhibitor (entry 4PTI of the Brookhaven Protein Data Bank, 362-point sphere for all 454 nonhydrogen atoms) takes less than 1 second (on a single R3000 processor of an SGI 4D/480, about 5 MFLOP). The DCLM does not depend on the spherical point distribution applied. The quality of unit sphere tesselations is discussed. We propose new ways of subdivision based on the icosahedron and dodecahedron, which achieve constantly low ratios of longest to shortest arcs over the whole frequency range. The DCLM is the method of choice, especially for large molecular complexes and high point densities. Its speed has been compared to the fastest techniques known to the authors, and it was found to be superior, especially when also taking into account the small memory requirement and the flexibility of the algorithm. The program text may be obtained on request. © 1995 by John Wiley & Sons, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...