Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [s.l.] : Macmillan Magazines Ltd.
    Nature 389 (1997), S. 243-243 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] For the successful application of high-temperature copper oxide superconductors, the problem of the ease of motion of magnetic vortices (quantized flux lines) within the material must be solved. The motion results in finite electrical resistance which prevents the desired loss-free conduction ...
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    The protein journal 19 (2000), S. 441-447 
    ISSN: 1573-4943
    Keywords: Ferritin reactor ; heavy metal ions ; trapping and storage ; seawater ; monitoring pollution
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract An apparatus consisting of two pumps, a mixer, a ferritin reactor, and a spectrophotometer was constructed to study the ability to trap various heavy metal ions (M2+) and the dynamics of a reconstituted ferritin reactor in flowing seawater. Reconstituted pig spleen ferritin (PSFr) is assembled from apo-protein shell to form a reconstituted iron core. The main components of the PSFr are its core, which contains an Fe2+:Pi stoichiometry of 6.0±0.5, reconstituted from pig spleen apoferritin (apo PSF), Fe2+, inorganic phosphate (Pi), and O2 (0.6 atm). The Fe3+—Pi clusters within the PSFr core exhibit resistance to salt ranging from 1% to 6% NaCl. The ferritin reactor consists of PSFr and an oscillating bag. Using the reactor, M2+ ions such as Cd2+, Zn2+, Co2+, and Mn2+ are directly trapped by the ferritin. We found a 1:2±0.2 stoichiometry of the trapped M2+ to the released iron as measured by chemical analysis or atomic absorption spectrometry; nontransient elements such as Na+, K+, Ca2+, etc., were scarcely trapped by the reactor. This study provides basic conditions for establishing a ferritin reactor and a convenient means for monitoring the pollution of heavy metal ions in seawater.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    The protein journal 19 (2000), S. 671-678 
    ISSN: 1573-4943
    Keywords: Azotobacter vinelandii ; nitrogenase activity ; hydrogenase activity ; redox mediators ; H2 evolution and uptake ; redox potential ; electron transfer chain
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract In bioelectrochemical studies, redox mediators such as methylene blue, natural red, and thionine are used to studying the redox characteristics of enzymes in the living cell. Here we show that nitrogenase activity in Azotobacter vinelandii is completely inhibited by oxidized methylene blue (MBo) when the concentration of this mediator in the medium is increased up to 72 μM. This activity in A. vinelandii is somewhat inhibited by a coenzyme, ascorbic acid (AA). However, the nitrogenase activity within the A. vinelandii cell is unchanged even for a high concentration of oxidized natural red (NRo) alone. Interestingly, these mediators and AA do not have the capacity to inhibit the H2 uptake activity of the hydrogenase in A. vinelandii. Average active rates of 66 nM H2 evolved/mg cell protein/min from the nitrogenase and 160 nM H2-uptake/mg cell protein/min from the hydrogenase in A. vinelandii are found in aid of the activities of the enzymes for H2 evolution and for H2 uptake are compared. The activities of both enzymes in A. vinelandii are strongly inhibited by thionine having high oxidative potential. Mechanisms of various mediators acting in vivo for both enzymes in A. vinelandii are discussed.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...