Library

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1471-4159
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Medicine
    Notes: Abstract: We studied the effects of aluminum salts on the degradation of human neurofilament subunits (NF-H, NF-M, and NF-L, the high, middle, and low molecular weight subunits. respectively) and other cytoskeletal proteins using calcium-activated neutral proteinase (calpain) purified from human brain. Calpain-mediated proteolysis of NF-L, tubulin, and glial fibrillary acidic protein (GFAP), three substrates that displayed constant digestion rates in vitro, was inhibited by AlCl3 (IC50= 200 μM) and by aluminum lactate (IC50= 400 μM). Aluminum salts inhibited proteolysis principally by affecting the substrates directly. After exposure to 400 μM aluminum lactate and removal of unbound aluminum, human cytoskeletal proteins were degraded two- to threefold more slowly by calpain. When cytoskeleton preparations were exposed to aluminum salt concentrations of 100 μM or higher, proportions of NF-M and NF-H formed urea-insoluble complexes of high apparent molecular mass, which were also resistant to proteolysis by calpain. Complexes of tubulin and of GFAP were not observed under the same conditions. Aluminum salts irreversibly inactivated calpain but only at high aluminum concentrations (IC50= 1.2 and 2.1 μM for aluminum lactate and A1C13, respectively), although longer exposure to the ion reduced by twofold the levels required for protease inhibition. These interactions of aluminum with neurofilament proteins and the effects on proteolysis suggest possible mechanisms for the impaired axoplasmic transport of neurofilaments and their accumulation in neuronal perikarya after aluminum administration in vivo.
    Type of Medium: Electronic Resource
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...